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Abstract. We find an explicit model for equivariant topological
Hochschild homology of semiperfect and smooth algebras over a
finite field, as modules over the constant Green functor over a
primary cyclic group.

1. Introduction

In this note, we consider the Z/pr-equivariant spectrum
(1) TRr+1(R) = THHZ/pr(R)

for an Fp-algebra R. The spectrum TRr+1(R) is automatically a Z/pr-
equivariant E∞-module over the E∞-algebra TR(Fp) = HZp, the de-
rived category of which is equivalent to the derived category DZp of
Z/pr-equivariant Mackey modules over the constant Z/pr-equivariant
Green functor Zp.

The main goal of the present paper is to construct an explicit model
of THHZ/pr(R) for a smooth (commutative) Fp-algebra R in the (un-
bounded) derived category of chain complexes of Zp-modules. Our ap-
proach is based on the method of faithfully flat descent to quasiregular
semiperfect rings. This method was discovered and used by Bhatt,
Morrow, and Scholze [3] to construct the motivic filtration on the
groups THHZ/pr(R) for a smooth Fp-algebra R. By a result of Hessel-
holt [14], TRr+1(R) in this case is isomorphic to the truncated De Rham
- Witt complex of R tensored with a periodicity element of homological
degree 2. For quasiregular semiperfect Fp-algebras R, THHZ/pr(R) is
concentrated in even degrees, so the Postnikov filtration can be used.
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The approach of [3] leads to spectral sequences from crystalline co-
homology to several variants of topological cyclic cohomology. A simi-
lar situation also occurs in the category of quasisyntomic Zp-algebras,
with crystalline cohomology replaced by prismatic cohomology. Cases
where these spectral sequences collapse led to important recent results,
including the spectacular progress of Antieau, Krause, and Nikolaus
[2] on the algebraic K-theory of Z/pn. (For other recent results in this
direction, see for example A. Mathew [21].)

It should be remarked that from the point of view of homotopy the-
ory, the cases of positive and mixed characteristic are quite different.
While, as already remarked, for an Fp-algebra R, (1) is an E∞-module
spectrum over HZp, which enables a purely chain-level model in the
derived category of Mackey modules over Zp, for Zp-algebras R, this
approach only takes us to E∞-modules over the Z/pr-equivariant spec-
trum TR(Zp), which is known by Bökstedt and Madsen [5] to be a
certain form of connective K-theory (or, perhaps more precisely, J-
theory). Accordingly, the Bott periodicity element is clearly visible in
the calculations (see e.g. [2, 5, 21]). Thus, modules over connective
K-theory would have to be modeled to discuss the mixed characteristic
case.

For this reason, we stick to the case of pure characteristic p in the
present paper. In this case, on the other hand, our results give a
complete information on (1) in terms of classical homological algebra.
In principle, then, this refines the information of the spectral sequence
[3], which only gives an associated graded object.

Remarkably enough, with the exception of quasiregular semiper-
fect descent, we are able to use, more or less, the classical method
of Hesselholt-Madsen [15] who calculated the answer for a perfect com-
mutative Fp-algebra. We observe that in this case, (1) is given by
essentially the “geometric fixed points” of the constant HZp-module
over a primary cyclic group Z/ps with respect to the subgroup Z/ps−r
(Theorem 2 below). A key observation is that this does not depend
on the choice of s > r. Explicit chain-level Zp-Mackey module models
are immediately visible. Additionally, geometric fixed points of (1) are
also obtained as geometric fixed points of HZp with respect to different
subgroups.

The other key point is to remark that this result also extends to
the case of (1) for quasiregular semiperfect Fp-algebras R, i.e. that for
such R, (1) is described as a direct sum of the same building blocks
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(i.e. geometric fixed points of the Z/ps-equivariant HZp with respect
to different subgroups). This can also be proved using the methods
of [15], along with the Quillen spectral sequence [22], Theorem 5.1 to
start the induction. However, to use the results for the program we
set out, it is important to discuss the precise functoriality for the case
of quasiregular semiperfect Fp-algebras. For this purpose, we use an-
other device, namely the module-valued Witt vectors defined by Dotto,
Krause, Nikolaus, and Patchkoria [6, 7]. Applied to powers of the aug-
mentation ideal J of the limit perfection SR of a quasiregular semiper-
fect Fp-algebra R, these are subobjects of W (SR), which can be used
to describe our answer functorially (Theorem 5). Additionally, to show
that our functoriality is the right one (thereby describing the correct
presheaf on the crystalline site), we use a certain rigidity of the geo-
metric fixed points of HZp (Lemma 3).

It is worth noting that other approaches to the motivic filtration
are possible, see e.g. Hahn, Raksit, and Wilson [12]. This is related
to Hesselholt’s description of topological cyclic homology of an associa-
tive Fp-algebra as a derived functor [13]. The latter result is based on a
description of TR for a unital tensor Fp-algebra as a non-commutative
analogue of the De Rham-Witt complex. This is then concentrated
in homological degrees 0, 1. However, it is worth noting that (1) for
a unital tensor Fp-algebra, (or of a smooth commutative Fp-algebra),
is actually not a direct sum of our building blocks given by geomet-
ric fixed points of homology with constant coefficients. Rather, finite
RO(Z/pr)-graded suspensions are involved, which gives non-trivial ex-
tensions of the building blocks. This could make discussion of func-
toriality using this approach substantially more difficult. Therefore,
our discussion could be considered as another application of the Bhatt-
Morrow-Scholze approach, beyond the motivic filtration.

The present paper is organized as follows: In Section 2, we discuss
some basic notation, and recall the theory of Mackey functors over
a primary cyclic group, and Mackey modules over the constant Green
functor. In Section 3, we introduce our building blocks, and discuss the
chain-level model of (1) for a perfect Fp-algebra R. In Section 4, we
discuss the chain-level model for quasiregular semiperfect Fp-algebras,
and the functoriality.
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2. Preliminaries

Equivariant stable homotopy theory for a finite group G is the basic
background of our discussion. In particular, we are interested in gen-
uine equivariant spectra, which represent RO(G)-graded equivariant
homology and cohomology theories. The basic background reference
for this topic is Lewis, May, Steinberger [19]. A G-equivariant spec-
trum is often decorated by a subscript E = EG, while EG denotes the
corresponding fixed point spectrum. For a genuine equivariant spec-
trum E and a fixed n ∈ Z, the system of groups (πn(EH))H over sub-
groups H ⊆ G forms an additive functor from the stable orbit category
to abelian groups. Such a functor is known as a Mackey functor, which
can be described purely algebraically (see [8]). Additionally, there exist
equivariant Eilenberg-Mac Lane spectra HM for a given Mackey func-
tor M , where (πn(HMH))H is equal to M for n = 0, and equal to 0
else ([20]).

There is a natural tensor product 2 in the category of Mackey func-
tors (see [8, 18]). One can further consider (commutative) ring objects
in the category of Mackey functors, which are called Green functors.
One defines Mackey modules over a Green functor in the obvious way.
For a Green functor A, on the other hand, HA is an E∞-ring spectrum,
and by the work of Greenlees and Shipley ([11], Section 5), the derived
category of E∞- HA-modules (see [9] for the relevant background) is
equivalent to the unbounded derived category of A-Mackey modules.

Recall that for a finite group G and a normal subgroup H, the geo-
metric H-fixed points ΦHE of a G-spectrum E is the G/H-equivariant
spectrum

(E ∧ ẼF [H])H

where F [H] is the family of subgroups of G not containing H, EF
is the classifying space of a family F (i.e. a G-CW-complex whose
K-fixed points are empty if K /∈ F and contractible if K ∈ F). The
symbol X̃ denotes the unreduced suspension of a G-space X.

From the point of view of representation theory, for a finite-dimensional
real G-representation V , one has

S∞V = ẼF [V ]

where F [V ] is the family of all subgroups K ⊆ G where

V K 6= 0.
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The essential point is that in the full generality of an A∞ ring spec-
trum R, (1) is a genuine Z/pr-equivariant spectrum. This was first
proved by Bökstedt, Hsiang, and Madsen [4]. More modern approaches
now exist, see for example [1, 17]. Therefore, it is of interest to us to
study the above concepts explicitly for the groups G = Z/pr.

Specifically, let us recall that a Z/pr-Mackey functor M can be un-
derstood as a sequence of abelian groups

Mi, i = 0, . . . r,

where Mi is an Z/pr
Z/pi -module (the value of the functor M at isotropy

Z/pi). Further, we are given Z/pr-equivariant abelian group homo-
morphisms

r = ri : Mi →Mi−1, c = ci : Mi →Mi+1

(the restriction and corestriction) such that, denoting by γ the gener-
ator of the ambient group Z/pr, we have

(2) ri+1 ◦ ci = 1 + γp
r−i−1

+ · · ·+ γp
r−i−1(p−1).

Modules over the Z/pr-equivariant Green functor Zp are sequences of
Zp-modules Mi, i = 0, . . . , r which satisfy the above axioms and the
additional property

(3) ci ◦ ri+1 = p

(see e.g. [18]). Morphisms are tuples of homomorphisms of Zp-modules
which commute with restrictions and corestrictions.

The principal projectives in the abelian category of Z/pr-equivariant
Zp-modules are modules of the form

(4) M [Z/pi]

where 0 ≤ i ≤ r, M is a projective Zp-module and

M [Z/pi]j =


M [

Z/pr

Z/pj
] for r − j ≤ i

M [
Z/pr

Z/pr−i
] for r − j > i.

The restrictions and corestrictions are given by

rj(1) = 1 for j ≤ r − i

and
cj(1) = 1 for j ≥ r − i.
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(The remaining corestrictions and restrictions are determined.) One
can think of (4) as the free Z/pr-equivariant Zp-module freely generated
by M in isotropy Z/pr−i.

3. The building blocks and the case of perfect
Fp-algebras

Let αs be the irreducible complex representation of Z/ps given by
sending the generator γ to ζps = e2πi/p

s . Let αs,i = αp
i

s for i = 0, . . . , s.
Let, in the derived category DZZ/pr -Mod of modules over the constant
Z/pr-Mackey functor ZZ/pr ,

(5) Wr,j = (C̃∗(S
∞αs,i))Z/p

s−r

, i ≥ 0, i = j − r + s− 1,

for j = 0, . . . , r. Here C̃∗ denotes the ordinary reduced (say, singu-
lar) chain complex, with G-action induced by the action on the space.
This always gives a chain complex of Zp-modules (for a more complete
discussion, see [18]).

The definition is ambiguous, but by construction, Wr,j is an E∞-
algebra over ZZ/pr , whose homotopy type only depends on r and j.

Let us recall that (5) are chain-level models of constructions familiar
in equivariant stable homotopy theory. In our present situation, we
have

(αs,i)
Z/pj = 0 if and only if j > i,

so
S∞αs,i = ˜EF [Z/pi+1].

Taking fixed points on the level of chain complexes and spectra is equiv-
alent. The reason these complexes show up, and the fact that the def-
inition (5) does not depend on s follows from the cyclotomic property
of THH, and from the fact that TR(Fp) = HZp.

In more detail, TR is the homotopy inverse limit of THHZ/pr with
respect to the restriction maps (see [4, 15]). This also automatically
becomes a genuine Z/pr-equivariant spectrum by the isomorphism

S1/(Z/pr) ∼= S1.

Further, in this sense,
TR(Fp) = HZp.

(which is proved in [15]). We then obtain a map from the geometric
fixed points of TRZ/ps to the geometric fixed points of THHZ/ps , which
is an equivalence by an immediate computation. Further, the geometric
fixed points of THH is THH again by the cyclotomic property.
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Further, by the work of Greenlees and Shipley [11], for a Green
functor A, the derived category of HA-modules is equivalent to the
unbounded derived functors of A-Mackey modules.

By these considerations, we also have a canonical E∞-map

π :Wr,j →Wr,j′ , 0 ≤ j ≤ j′ ≤ r.

Comment: One can show that these algebras cannot in general be
modeled by strictly (anti-)commutative DGA’s. This is because the
canonical morphism to the corresponding Tate complex induces an iso-
morphism on homology groups in non-negative degrees. On the other
hand, the Tate complex inherits Steenrod operations from the Borel
cohomology complex, which computes the cohomology of a lens space.
Therefore, the Tate complex has non-trivial Steenrod operations which
restrict to non-trivial Dyer-Lashof operations on the geometric fixed
point complex (5).

If we relax our requirements on the coherence of the multiplicative
structure, we have the following explicit chain models, where γ denotes
a fixed generator of Z/pr:

(6) Wr,0 : Z Z[Z/pr]
pεoo Z[Z/pr]

1−γoo Z[Z/pr] . . .
pNoo

where ε is the augmentation and

N = 1 + γ + · · ·+ γp
r−1,

while
(7)

Wr,j : Z Z[Z/pr−j+1]
εoo Z[Z/pr−j+1]

1−γoo Z[Z/pr−j+1] . . .
Nr−j+1oo

where
Ni = 1 + γ + · · ·+ γp

i−1.

For any Fp-algebra A, we have an (Zp)Z/pr -Mackey module W r+1(A)

which is Wi+1(A) at isotropy Z/pi and restrictions resp. corestrictions
are given by the Frobenius resp. Verschiebung.

More generally, we also have, for 0 ≤ j ≤ r, an (Zp)Z/pr -Mackey
module ΦjW r+1−j(A) which is Wi+1−j(A) at isotropy Z/pi for i ≥ j
and 0 for lower isotropy, and restrictions resp. corestrictions are given
by the Frobenius resp. Verschiebung.
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1. Lemma. The Z/pr-Mackey homology of Wr,j is given by

(8) Hs(Wr,j) =

{
ΦjW r+1−j(Fp) for s ≥ 0 even

0 else.

Proof. Use (6), (7). �

Comment: Despite the fact that the homology computed in Lemma 1
consists of Z/p(r−j+1)-modules, it turns out that Wr,j is not in general
equivalent to a chain complex in the category of Z/p(r−j+1)-modules.

For example for r = j = 1, we have a Z/p-module

(9) W1,1 ⊗Z Z/p.

Attempting to construct W1,1 using Bockstein obstruction theory, we
get a non-zero obstruction at the (p− 1)’st step, indicating a non-zero
higher Massey power of the generator of an odd-degree cohomology
group (one can also see this effect on the Tate complex, where the
computation is simpler).

Nevertheless, we have the following:

2. Theorem. Let R be a perfect Fp-algebra. Then in the category of
Mackey modules DZp-Mod, one has

(10) THHZ/pr(R) =Wr,0 ⊗Z W (R).

Proof. The proof is a complete rehash of the case of R = Fp treated
by Hesselholt and Madsen [15]. We use induction on r using the cyclo-
tomic property, and determining the differential in the Borel homology
spectral sequence, which follows from the Tate spectral sequence. This
also gives the identification of the connecting map and, by induction
the Zp-module model of THHZ/pr(R). �

It is also useful to record the morphisms between the objects Wr,j

of the (unbounded) derived category of Wr,0-modules, which can be
thought of as a partial “rigidity” statement:

3. Lemma. The graded module of morphisms from Wr,i to Wr,j in
DWr,0 is isomorphic to the Z/pr isotropy part of H∗Wr,j when i ≤ j
and is 0 else.

Proof. Recall the Z/ps-equivariant based CW-complexes Φs,i 0 < i ≤ s
which are equivalent to S0 in isotropies Z/pj for j ≥ i and contractible
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in smaller isotropies. Then the suspension spectra Σ∞Φs,j are E∞-ring
spectra, where

(11) Φs,i ∧ Φs,j ∼ Φs,max(i,j).

The groups in question can be expressed as derived Z/pr-equivariant
maps betweenWr,0-module of the formWr,0∧Φs,i for different i. Thus,
the positive part of our statement (the case of i ≤ j) follows from (11).

For the case i > j, consider a map of Wr,0-modules

(12) ΣnWr,i →Wr,j.

Composing with the n-suspension of the projection

(13) Wr,j →Wr,i,

we obtain a map of Wr,0-modules

(14) ΣnWr,j →Wr,j,

which we already classified. In particular, we claim that the composi-
tion (14) is 0. Otherwise, it would be injective on homotopy groups.
However, we also know that the projection (13) is 0 on homotopy groups
in degrees n� 0.

Thus (14) is 0. Thus, the map (12) factors through the cofiber C
of the projection (13). However, there are no non-zero morphisms of
HZ-modules

(15) ΣnC →Wr,j,

since C has a HZ-module cellular structure where cells are principal
projectives with generators in isotropies in whichWr,j has 0 homotopy
(see (7)).

However, then there are also no non-zero morphisms (15) of Wr,0-
modules, since

C ∧HZWr,0 ∼ C.

�

4. The case of a semiperfect Fp-algebra

We now treat the case of a quasiregular semiperfect Fp-algebra R.
We will give the definition of this concept, which is somewhat technical,
following [3], but for our purposes, we can focus on the case

(16) R = C ⊗A C ⊗A · · · ⊗A C
where A is a smooth Fp-algebra and C is its colimit perfection.
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The reason for this is that if A is a smooth Fp-algebra, we can con-
sider cosimplicial descent from A to (16). A crucial fact used in [3] is
that this preserves (1). Therefore, to give a Zp-module chain model of
THH(A) for a smooth Fp-algebra A, it suffices to give it for quasireg-
ular semiperfect algebras, specifically those of the form (16).

Denote

SR = lim(. . .
φ // R

φ // R)

be the limit perfection of R, where φ : R→ R is the Frobenius.
Denote by J the kernel of the projection SR → R and denote also

I = Ker(φ : R→ R).

One has
J/J2 ∼= I/I2,

since φ(I) ⊆ I2. Using the notation LB/A of Quillen [22] for the derived
cotangent complex for a (non-derived) commutative A-algebra B, we
have

LSR/Fp = 0,

which, by Theorem 5.1 of [22], gives

LR/Fp = LR/SR
.

Then Theorem 6.3 of [22] gives

H1LR/SR
= Tor1SR

(R,R) = J/J2,

which gives

(17) H1LR/Fp = I/I2.

By definition ([3], Definition 8.8), a semiperfect Fp-algebra R is called
quasiregular when I/I2 is a flat R-module and

HnLR/Fp = 0 for n 6= 1.

In our situation of interest, we have a somewhat stronger property.
Call a quasiregular semiperfect Fp-algebra R quasismooth when J/J2

is a free R-module of finite rank and

(18) Sym`
R(J/J2) = J `/J `+1.

4. Lemma. Let A be a smooth Fp-algebra and let P be its colimit per-
fection. Then

R = P ⊗A · · · ⊗A P
is a quasismooth semiperfect Fp-algebra.
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Proof. A tensor product over Fp of two perfect Fp-algebras is perfect
(since φ ⊗ φ is a composition of the injective maps φ ⊗ 1 and 1 ⊗ φ).
Then one can prove the analogues of the statements for the ideal J for
the kernel of the projection P → R (since this situation is a colimit
of the smooth case, where the statement follows from the theory of
parameters). Now while P is different from the limit perfection SR,
one can also prove that the statement about the ideal J is equivalent
for the kernel ideal of any surjective homomorphism from a perfect
ring. �

Now let R be a quasismooth Fp-algebra, and let J/J2 be a free R-
module on a finite basis B

(19) J/J2 =
⊕
B

R.

We shall write

(20) WB`
r (R) =

⊕
B`

Wr(R)

where B` is the set of unordered `-tuples (with possible repeats) of
elements of B.

We can write this construction more functorially and more generally
as follows. Recalling the notion of Witt vectors with coefficients in a
module [6, 7, 23], we have

(21) WB`
r (R) ∼= Wr(SR, J

`)/Wr(SR, J
`+1).

We see that the right-hand side does not depend on the choice of a
basis, and, in fact, makes sense for every quasiregular semiperfect Fp-
algebra R. In that generality, this motivates in fact writing

Wr,j(R, `) := W (SR, J
`)/W (SR, J

`+1)⊗Wr,j.

Thus, we may also write

Wr(R, `) := holimDr(R, `),
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where Dr(R, `) is the diagram

Wr,r(R, `)

φ

��
Wr,r−1(R, `)

π //

φ

��

Wr,r(R, `)

. . .
π//

φ

��

Wr,r−1(R, `)

Wr,0(R, `)
π // . . .

where φ is the map induced by the p-th power (i.e. Frobenius) on R.

5. Theorem. For a quasiregular semiperfect Fp-algera R, one has
(22)

THHZ/pr(R)2` =
⊕̀
i=0

Wr+1(SR, J
`)/Wr+1(SR, J

`+1)⊗Wr+1(SR) Wr+1(R),

THHZ/pr(R)2`+1 = 0.

Further, in the category DZp-Mod, one has

(23) THHZ/pr(R) =
⊕
`≥0

Wr(R, `)[2`].

6. Corollary. If R is a quasiregular semiperfect Fp-algebra, then THHZ/pr(R)
is equivalent to a direct sum of even suspensions of the Zp-module com-
plexes Wr,i.

Proof of Theorem 5. We first consider the case r = 0. Then by [22],
Theorem 5.1, applied to the sequence

Fp → R⊗R→ R,

we obtain
LR/R⊗R = J/J2[2].

By [22], Theorem 6.3, we then have

TorR⊗R2` (R,R) = Sym`
RJ/J

2 = J `/J `+1,

T orR⊗R2`+1 (R,R) = 0.

Now following [15], we have a spectral sequence

TorA∗⊗R⊗R∗ (R,R)⇒ THH∗(R)
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where A∗ is the dual Steenrod algebra which, using the standard dif-
ferentials of [15] for p > 2, implies (22) (and hence (23)) for r = 0.

For r ≥ 1, one then also repeats the method of [15], considering the
Borel homology spectral sequence, which has the differential induced
from the case R = Fp and consequently collapses to even degrees.
Extensions are given by multiplication by p composed with the map
induced by the Frobenius on R.

One then again gets the total fixed points by using the fundamental
cofibration

EZ/pr+ ∧ E → E → ẼZ/p ∧ E
for a Z/pr-equivariant spectrum E, and identifying the last term by
induction using the cyclotomic property. The identification of the con-
necting map also mimics the perfect case, thus giving the result as well
as the decomposition (23).

The induction described is sufficient to prove the statement of Corol-
lary 6, and to count the number of copies of the complexes Wr,i. How-
ever, we stated our answer functorially in R, and the functoriality must
be right in the A∞-sense to be used for descent. For this purpose, we
invoke Lemma 3. We first observe that in the limit, we have

(24) TFZ/pr(R) ∼
⊕
`≥0

W (SR, J
`/J `+1)[2`].

Since W (SR, J
`/J `+1) are free Zp-modules, there are no higher derived

maps between the Zp-modules (24). Now let R → R′ be a homomor-
phism of quasiregular semiperfect Fp-algebras. Then the functoriality
we describe fits into the diagram of HZp-modules

(25)

TFZ/pr(R) //

��

TFZ/pr(R
′)

��
THHZ/pr(R) // THHZ/pr(R

′)

where the horizontal arrows are given by our functoriality, while the
vertical arrows are the natural projections. We may extend scalars
over HZp = TFZ/pr(Fp) to THHZ/pr(Fp) to obtain a diagram of Wr,0-
modules

(26)

TFZ/pr(R)⊗Zp
Wr,0

//

��

TFZ/pr(R
′)⊗Zp

Wr,0

��
THHZ/pr(R) // THHZ/pr(R

′).
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By Lemma 3, however, the bottom horizontal arrow (25) is uniquely
determined (in the A∞-sense) by the remaining arrows. This completes
the proof of our functoriality statement. �

Comment: Theorem 5 can be thought of as specifying an A∞-sheaf on
the crystalline site of Fp-algebras considered in [3]. Therefore, we can
use faithfully flat quasiregular semiperfect descent to obtain Mackey
chain models for THHZ/pr(R) for a smooth Fp-algebra R.

The “rigidity” of Lemma 3, however, does not imply that in the case
of smooth Fp-algebras, we would get again sums of copies of the com-
plexes Wr,i. In fact, in the case of the polynomial algebra Fp[x], it is
known ([10, 13, 14, 16]) that one obtains summands of finite RO(Z/pr)-
graded suspensions of the complexes Wr,i, which are non-trivial exten-
sions of the complexes Wr,i. In the case of quasiregular semiperfect
algebras, this behavior is ruled out in part by the fact that the chain
homology is contained in even degrees.

However, it is worth noting that by generalizing the Illusie complex
to tensor algebras, Hesselholt [13] was able to describe TC of an Fp-
algebra as a derived functor. Hahn, Raksit, and Wilson [12] recently
used a similar alternative to quasiregular semiperfect descent to define
a version of the motivic filtration on commutative ring spectra.
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