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Abstract. We discuss, in the language of classical equivariant
homotopy theory, the 6-functor formalism in the derived category
of G-equivariant spectra for a finite group G, where the ‘pure
strata’ correspond to free spectra over Weyl groups. As a result,
we identify new abelian categories of “perverse Mackey functors”
associated with arbitrary integral shifts assigned to the individ-
ual isotropies. We further prove that their derived categories all
coincide with the derived category of Mackey functors. We also
compute the abelian categories of perverse Mackey functors for
the case of elementary cyclic groups.

1. Introduction

While there have been substantial developments in investigating t-
structures on the homotopy category of motivic spectra [?, ?], examples
of t-structures on equivariant spectra are less explored. Nevertheless,
examples present themselves naturally, e.g. in the case of elementary
cyclic groups. For this reason, the authors pursued an analogue of the
6-functor formalism (in the sense of [?, ?, ?]) for isotropy separation in
G-equivariant spectra for G a finite group, in relation to the discussion
in or near Remark 13.4 in P. Scholze’s paper [?]. This allows us to define
“perverse” versions of Mackey functors for finite groups G, which we
discuss.

There turns out to be a substantial overlap of our formalism with in-
dependent previous work by Ayala, Mazel-Gee and Rozenblyum [?, ?]
and Cnossen [?]. Nevertheless, it seemed beneficial to describe the
idea using the classical language of equivariant stable homotopy the-
ory [?], which is different from [?, ?], and perhaps more familiar to
the community. We also describe some of the concrete properties of
the “perverse” t-structures obtained, showing for example an analog of
Beilinson’s theorem for perverse sheaves, which states that the derived
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categories of the hearts of our t-structures are equivalent to the derived
category of Mackey functors. (In this paper, all derived categories are
unbounded.)

We also characterize explicitly perverse t-structures for elementary
cyclic groups, which was our original motivation.

Acknowledgement: The authors are indebted to D. Ayala, B. Cnossen,
and N. Rozenblyum for discussions.

2. The 6-functor formalism of equivariant spectra and
perversity

2.1. A recollection of equivariant stable homotopy theory. Let
us recall briefly the May setup of G-equivariant spectra for a finite
group G [?]. One has a derived (otherwise termed “homotopy”) cate-
gory with an underlying topological category, which is the category
of based G-spaces with explicit infinite delooping (up to given G-
homeomorphisms) with respect to one-point compactifications SV of
finite-dimensional (say, real) representations V of G. Morphisms are
systems of maps preserving the structure. This is a topological cate-
gory with topological limits and colimits and a shift; this gives a notion
of homotopy. The functor

E 7→ (En)H

(where E is a G-spectrum) has a left adjoint Σ∞−nG/H+, n ∈ Z.
Homotopy classes of maps from these are the homotopy groups πHn (E),
and a weak equivalence is a morphism inducing an isomorphism on
those.

The derived category is obtained by inverting the weak equivalences.
It can be explicitly built as the full subcategory of homotopy classes of
morphisms on cell objects (with cells, again, of the form Σ∞−nG/H+).

By a family one means a set of subgroups of G closed under sub-
conjugacy. For a family F , we can consider the classifying space EF
which is a G-CW-complex with a contractible set of H-fixed points
for H ∈ F and no H-fixed points otherwise. For a family F , one can
consider the derived category of F -spectra, which is the category of ho-
motopy classes of morphisms on cell spectra where the cells are of the
form Σ∞−nG/H+, H ∈ F . Such spectra are also known as F-colocal.

2.2. The analogue of open inclusions and proper inclusions.
Now to set up an analog of a 6-functor formalism in this context, an
inclusion of families G ⊆ F can be considered as an “open inclusion j”:
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On the derived category of G-spectra, j∗ = j! is defined by

j∗E = j!E = E ∧ EG+.

The functors j!, j∗ are defined by

j!E = E, j∗E = FF(EG+, E) = EF+ ∧ F (EG+, E).

(Here FF denotes the function spectrum in the derived category of F -
colocal spectra, i.e. FF ′(Z, ?) is right adjoint to Z∧? in that derived
category.)

To give an analog of a “proper inclusion i,” denote by F [H] = F [H]G
the family of all subgroups of G not containing any conjugate of H. If
F is any family of subgroups of G, we also put FF [H] = F [H]∩F . We
shall also denote by FH the family of H-subgroups containing all the
elements of K ∈ F where K ⊆ H, and, when H / G, we shall denote
by F/H the family of subgroups K ⊆ G/H where K ·H ∈ F .

Now we shall be interested in the following condition:

(1) For g ∈ GrN(H), no groupK ∈ F contains both
H and g−1Hg.

This is always true if H is ⊆-maximal in F , or H / G. Recall [?] that
for any subgroup K ⊆ G, the forgetful functor from G-spectra to K-
spectra has a right adjoint FK [G, ?) and a left adjoint GnK?, which are
isomorphic in the derived category by the Wirthmüller isomorphism.
Further, for an E∞-K-ring spectrum E, FK [G,E) is always a E∞-G-
ring spectrum.

1. Lemma. For a K-E∞-ring spectrum R and a family F of subgroups
of G, the derived categories of R-module K-spectra (resp. FK-spectra)
and FK [G,R)-module G-spectra (resp. F-spectra) are equivalent.

Proof. Given an R-module M on K-spectra, we have an FK [G,R)-
module spectrum FK [G,M). Given an FK [G,R)-module N , forget its
structure to K-spectra, and then push forward via the counit of ad-
junction FK [G,R)K → R (which is an E∞-ring map). One checks
that these are inverse equivalences on derived categories. These con-
structions also induce a correspondence between spectra colocal in the
families FK , F due to the Wirthmüller isomorphism. �

Now recall that ẼF [H] is an N(H)-E∞-ring spectrum (since it has
a model S∞V for a finite-dimensional N(H)-representation V where
V K 6= 0 if and only if K ∈ F [H]). One also has an equivalence of
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derived categories

(2)
FN(H)-ẼF [H]-module spectra over N(H)

↓
(FN(H))/H-spectra over W (H)

given by X 7→ XH . By Lemma ??, We also have an equivalence of
derived categories

(3)
F -FN(H)[G, ẼF [H])-modules over G

l
FN(H)-ẼF [H]-modules over N(H).

We denote by i∗ the functor from the derived category of F -spectra
over G to the derived category of (FN(H))/H-spectra over W (H) given
by the composition of the equivalences of categories (??), (??) with the
pushforward FN(H)[G, ẼF [H])∧?. It immediately follows that we have

a right adjoint i∗ = i! given by forgetting the FN(H)[G, ẼF [H])-module
structure, which has a further right adjoint i! given by

F (FN(H)[G, ẼF [H]), ?).

By the “open complement” of the “inclusion” of FN(H)/H, we mean
simply the inclusion of the family FF [H] ⊆ F . Condition (??) then
gives

EF+ ∧ ẼF [H] ∼ EF+ ∧ FN(H)[G, ˜EF [H]N(H)),

which gives an exact triangle

(4) EFF [H]+ → EF+ → EF+ ∧ FN(H)[G, ˜EF [H]N(H)).

The reader is encouraged, as a warm-up, to consider these constructions
for G abelian, here the equivalence (??) is not needed.

These 6 functors satisfy the full 6-functor formalism as described in
[?], pp. 22-23. More precisely, we have the following

1. Proposition. The functor i∗ is left adjoint to i∗, the functor j∗ is
left adjoint to j∗, the functor i! is right adjoint to i!, the functor j! is
right adjoint to j!. Further, we have

(5) i∗i∗(E) = i!i!(E) = j∗j∗(E) = j!j!(E) = E

where the comparison maps are given by units and counits of adjunc-
tion. In the case where

G = FF [H],

we further have

(6) j∗i∗(E) = 0,



PEVERSE MACKEY FUNCTORS 5

and units and counits of adjunction induce exact triangles

(7) j!j
!(E) // E // i∗i

∗(E)
[1]

//

and

(8) i!i
!(E) // E // j∗j

∗(E)
[1]

// .

Proof. The statements about the adjunctions follow immediately from
the definitions. Property (??) follows from the fact that

EG+ ∧ EG+ ' EG+,

and the Wirthmüller isomorphism. Property (??) must be verified for
each case separately. We have

j∗j∗(E) = F (EF+, E) ∧ EF+ = E.

On the other hand,

j!j!(E) = EF+ ∧ E

which is equivalent to E if E is a cell spectrum with cells whose
isotropies are in F .

i∗i∗(E) = E

follows from

(9) ˜EF [H]N(H) ∧ ˜EF [H]N(H) = ˜EF [H]N(H).

The fact that

i!i!(E) = E

follows from (??) also and the Wirthmüller isomorphism.
The exact triangles (??), (??) follow from (??), which gives, for a

G-spectrum E, an exact triangle

EFF [H]+ ∧ E → E → FN(H)[G, ˜EF [H]N(H))

(which is (??)) and

F (FN(H)[G, ˜EF [H]N(H)), E)→ E → F (FF [H]+, E),

which is (??). �
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2.3. Gluing t-structures. When G is a finite group, then, as already
remarked, the “pure strata” are free W (H)-spectra for subgroups H ⊆
G. This is the picture of isotropy separation. So as a result, one can,
following the method of [?], define “perverse” t-structures on the derived
category of G-spectra by shifting the isotropies of different subgroups
independently. For a G-spectrum X, and a subgroup H ⊆ G, we define

j∗H(X) = (FN(H)[G, ẼF [H]) ∧X)H = (ẼF [H] ∧XN(H))
H ,

j!H(X) = F (FN(H)[G, ẼF [H]), X)H = F (ẼF [H], XN(H))
H

where EF [H] denotes the classifying space of the family of all sub-
groups of N(H) not containing H.

More precisely, we have the following result:

2. Theorem. Let G be a finite group and let λH ∈ Z be arbitrary
integers. Then there exists a “perverse t-structure” on G-spectra where
(graded homologically), the non-negative resp. non-positive categories
are the full subcategories on G-spectra X

(10) C≥0 = {X | (∀H ⊆ G)(∀k < λH) π
{e}
k (j∗H(X)) = 0}

(11) C≤0 = {X | (∀H ⊆ G)(∀k > λH) π
{e}
k (j!H(X)) = 0}.

Proof. For each subgroup H, we have functors j∗H , j!H from G-spectra
to free N(H)/H-spectra, obtained by taking i∗j∗ resp i!j! where j∗ = j!

is the restriction to a family F in which H is maximal, and i∗, i! are the
above restriction functors to F/H-spectra, which are the same as free
N(H)/H-spectra. Using Proposition ??, the existence of a t-structure
satisfying formulas (??), (??) is essentially proved in [?].

To give more detail, one proceeds by induction in the case of one
closed stratum. In the present case, this refers to a family F , a maximal
group H ∈ F (with respect to inclusions), and the family F ′ = FH =
F ∩ F [H].

In this setting, we assume that we have defined a t-structure on the
derived category of G-cell spectra with cells of isotropies in F ′, and we
also consider the standard t-structure on free W (H)-spectra, shifted
by λH .

We need to prove that a G-cell spectrum E with cells of isotropies
in F factors as

(12) τ≥0(E)→ E → τ≤−1(E)

where τ≥0(E) ∈ C≥0, τ≤−1(E) ∈ C≤−1.
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To construct the factorization (??), we begin with the octahedron

(13)

j!τ≥0j
!(E)

Id
��

// j!j
!(E)

��

// j!τ≤−1j
!(E)

��
j!τ≥0j

!(E) // E

��

// E ′

��
i∗i
∗(E) Id // i∗i

∗(E).

We have
j∗j!τ≥0j

!(E) = j!j!τ≥0j
!(E) = τ≥0j

!(E)

while
i∗j!τ≥0j

!(E) = 0

since i∗j! is the left adjoint to j∗i∗ = 0. Thus,

j!τ≥0j
!(E) ∈ C≥0.

On the other hand, by the middle horizontal triangle of (??),

(14) j!(E ′) = τ≤−1j
!(E)

and hence

(15) j!E ′ ∈ C≤−1.

We now consider our second octahedron

(16)

i!τ≥0i
!(E ′)

Id
��

// i!i
!(E ′)

��

// i!τ≤−1i
!(E ′)

��
i!τ≥0i

!(E ′) // E ′

��

// E ′′

��
j∗j
∗(E ′)

Id // j∗j
∗(E ′).

Again, we note that

i∗i!τ≥0(i
!(E ′)) = i∗i∗τ≥0i

!(E ′) = τ≥0i
!(E ′)

while j∗i! = j∗i∗ = 0, so

i!τ≥0(i
!(E ′)) ∈ C≥0.

On the other hand, just as before, we have

i!(E ′′) ∈ C≤−1,
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but we also need to verify (??) with E ′ replaced by E ′′. To this end,
however, we evoke the rightmost vertical triangle (??). Applying j!,
and using the fact that j!i! = j∗i∗ = 0, we get that

j!(E ′′) = j!j∗j
∗(E ′) = j∗j∗j

∗(E ′) = j∗(E ′) = j!(E ′),

so we may apply (??) directly, and we are done.
�

3. Examples

In this section, we discuss the special case of elementary cyclic groups,
and also comparison with known structures, namely suspensions by
representation spheres, in the general case.

3.1. Elementary cyclic groups. As an example, let us consider the
case G = Z/p for a prime p. Let us begin by writing the condition of
a spectrum X being in the heart C0. Because of shift, without loss of
generality, we can assume that λ{e} = 0. Put λZ/p = λ. For H = {e},
we get the condition

(17) π
{e}
k (X) = 0 for k 6= 0.

For H = G = Z/p, we get the conditions

(18) π
Z/p
k (F (ẼZ/p,X)) = 0 for k > λ

and

(19) π
Z/p
k (ẼZ/p ∧X) = 0 for k < λ

We have

(20) HM [Z/p] ∈ C0
where for an abelian group M , M [Z/p] is the left Kan extension from
the free orbit to the category of Mackey functors (whose value on the
free orbit is M [Z/p] and on the fixed orbit is M). Specifically, (??)
holds since

F (ẼZ/p,M [Z/p]) ∼ ẼZ/p ∧M [Z/p] ∼ 0,

and thus conditions (??), (??) are vacuous.
For an abelian group M , we also have a Mackey functor Mφ whose

value is M on the fixed orbit and 0 on the free orbit. The spec-
trum HMφ is Sβ-periodic for a non-trivial irreducible complex Z/p-
representation β, while

˜EF [Z/p] = S∞β.
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Thus, we conclude that
(21) HMφ[λ] ∈ C0.
We also need to consider the constant Mackey functorsM for an abelian
group M (which is M on both the free and fixed orbit, and the restric-
tion is an isomorpism). From the cofibration sequence

EZ/p+ → S0 → ẼZ/p,
we conclude that

(22) π
Z/p
k (F (ẼZ/p,HM) = 0 for k > −2

and

(23) π
Z/p
k (ẼZ/p ∧HM) = 0 for k < 0.

From this, for p = 2, if α is the one-dimensional real sign representation
of Z/2, we see that
(24) HM [λα− λ] ∈ C0.
Since the Mackey functors involved in (??), (??) and (??) generate
the category of Z/p-Mackey functors, those equations characterize the
t-structure. Hence, we have

2. Proposition. In the case of G = Z/2, the t-structures obtained from
our 6-functor formalism are precisely the (k + λα)-suspensions of the
standard t-structure k, λ ∈ Z.

In the case of an odd prime p, there is no representation α. Therefore,
the t-structure obtained in the case of λ odd is non-trivial. To describe
the heart, we will need the following lemma. Let T ∈ A(Z/p) be the
element of the Burnside ring represented by the free orbit [Z/p].

3. Lemma. The ring
[Z̃/p, Z̃/p]

of stable homotopy self-maps of the unreduced suspension of Z/p, is
isomorphic to the ring Z[γ]/(γp − 1) where γ is the generator of Z/p.
Further, in this ring, we have

(25) 1 + γ + · · ·+ γp−1 = p− T.
Proof. Consider first the long exact sequence
(26)
. . . [S1, Z̃/p]→ [ΣZ/p+, Z̃/p]→ [Z̃/p, Z̃/p]→ [S, Z̃/p]→ [Z/p+, Z̃/p] . . .
The first map is 0. The second Z[Z/p]-module is

(27) Z[Z/p]/(1 + γ + · · ·+ γp−1).
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(We can think of it as being generated by 1 − γ.) The last term is 0.
The penultimate term is Z, using the cofibration

(28) Z/p+ → S → Z̃/p,

with the generator represented by the inclusion S0 ⊂ Z̃/p. The first
statement follows.

For the second statement, one notes that T 2 = pT . Thus, we can
ask what elements x ∈ Z[γ]/(γp − 1) satisfy the equation xp = px.
Embedding into Q[γ]/(γp − 1) = Q[ζp]

∏
Q, we expect four solutions,

which are
p,N, 0, p−N

(where N = 1 + γ + · · · + γp−1). Further, we know from the cofibra-
tion sequence (??) that the penultimate map (??) sends T to 0. This
narrows down the selection to either 0 or p − N . If it were 0, then T
would also annihilate the Euler characteristic

χ(Z̃/p) = T − 1,

which is not the case. This concludes the proof. �

To describe the t-structure from our 6-functor formalism for λ = 1
for p > 2, we remark that in this case, for a Mackey functor Q,

(29) Q ∈ C0 when the corestriction c of Q is onto

and for an abelian group M ,

(30) Mφ[1] ∈ C0.
Since for any Mackey functor Q, we can consider the Mackey functor
Q′ which has the same value as Q on the free orbit, while the value of
Q′ on the fixed orbit is

ImcQ .

We then have a short exact sequence of Mackey functors

(31) 0→ Q′ → Q→Mφ → 0

for a suitable abelian group M . Thus, the only elements of C0 can be
expressed as an extension of an object of the form (??) by an object of
the form (??).

Accordingly, when X ∈ C0, we can consider the connecting map of
the long exact sequence associated with the cofibration sequence (??):

(32) ∂ : π
Z/p
1 (Z̃/p ∧X)→ π

{e}
0 (X)

We find that the corestriction of the part of X of type (??) (which
determines it) is the cokernel projection of (??).
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On the other hand, the part of X of the form (??) can be recovered
as Ker(∂). This implies the following conditions:

(33) ∂ is a homomorphism of Z[Z/p]-modules

(34) Ker(∂) ⊆ Ker((1 + γ + · · ·+ γp−1)− p)

(using Lemma ??) and

(35) Im(∂) ⊇ Im(1− γ).

Conversely, one proves that any morphism of Z[Z/p]-modules satisfying
these conditions can be realized by an X ∈ C0. Thus, we obtain

3. Proposition. For λ = 1, the heart C0 of our perverse t-structure
is equivalent to the abelian category of all homomorphism of Z[Z/p]-
modules

∂ : M → N

which satisfy conditions (??) and (??).

�

Note that we can similarly describe the case of λ odd by shifting
again by a representation sphere.

3.2. The general finite group case. When G is a general finite
group, then we have a parameter λH ∈ Z for every subgroup H ⊆ G.
The collection (λH)H⊆G is called a perversity. As above, the heart of
the perverse G-equivariant spectraX with respect to the corresponding
t-structure consists of spectra satisfying the conditions

πHk (ẼF [H] ∧XN(H)) = 0 for k < λH

and
πHk (F (ẼF [H], XN(H))) = 0 for k > λH

for all H.
For the standard t-structure, one has λH = 0 for all H. Now let

V be a finite-dimensional real H-representations. Then since SV is
invertible, there is a t-structure where C≥0 consists of all G-equivariant
spectra where

πk(S
V ∧X) = 0 for k < 0

where πk denotes the k-th Mackey homotopy group. One readily sees
that this corresponds to the above example with

(36) λVH = −dimR(V H).
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This also makes sense for a virtual real representation V . Such shifts
of t-structures on equivariant spectra by suspensions by virtual repre-
sentations played a role in [?]. Thus, if we denote by SG the set of all
subgroups H ⊆ G, we have a sublattice

ΛG ⊆ ZSG

consisting of all tuples λ = (λH)H∈SG satisfying the condition (??).
The set of equivalence classes of perverse t-structures up to suspension
by a virtual representation is therefore
(37) ZSG/Λ.

This tends to be non-trivial. Consider, for example, the group G =
Z/2 × Z/2. All the real representations of G are of real type, and
the real irreducible representations are the trivial representation and
the three sign representations. Now we notice that for each of these
irreducible real representations V , the number∑

H(G

dim(V H)

is even, equal to 2 for each of the sign representations and equal to 4
for the trivial representations. We conclude that the cardinality of (??)
is 2 for G = Z/2× Z/2.

4. An analogue of Beilinson’s theorem

4. Theorem. For every perversity λ = (λH)H⊆G, the derived category
of the heart C0 of the corresponding t-structure is equivalent to the de-
rived category of G-Mackey functors.

Proof. Denote, for a perversity λ, by Cλ0 the heart of the corresponding
t-structure on G-equivariant spectra, and let us also use the symbols
Cλ≥0, Cλ≤0 accordingly. Then we already remarked that C00 is simply the
abelian category of Mackey functors, so the statement is true for λ = 0.

Also for a virtual representation V , smashing with SV induces an
equivalence between Cλ0 and Cλ+λV0 . Since SV is an invertible object of
D-G-Spectra, our statement is hence equivalent for λ and λ+ λV .

Our general approach to proving the Theorem will follow the ap-
proach of Beilinson [?, ?], with the added observation that the material
[?] on filtered categories can now be replaced by working in a topolog-
ical category with homotopically reasonable composition (a treatment
using quasicategories can be found in Lurie [?]).

This means doing an induction on families F on the number of el-
ements of F . To this end, we also need to consider the t-structures
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on F -colocal spectra constructed above from a perversity λ (depend-
ing only on λH for H ∈ F). We will denote the corresponding heart,
the subcategory on connective and coconnective objects by Cλ,F0 , Cλ,F≥0 ,
Cλ,F≤0 , respectively.

The case of λ = 0 deserves special attention. We can refer to objects
of C0,F0 as F -colocal Mackey functors. They can be modelled by F -
colocal spectra X which satisfy

(38) πk(X
H) = 0 for H ∈ F , k 6= 0.

For such a spectrum X, π0X = M is necessarily a Mackey functor, and
we may thus choose X = HM ∧EF . So we see that (??) is necessarily
the restriction to F of a Mackey functor. On the other hand, if we
denote by B the Burnside category, then for any additive functor from
the full subcategory of B on objects of F to abelian groups

(39) N : B|F → Ab,

the left Kan extension
B ⊗B|F N

is a Mackey functor whose values on B|F coincide with N . Thus, we can
identify C0,F0 with the category of additive functors (??) and additive
natural transformations.

We also recall that Mackey functors have enough projectives, given
by coproducts of principal projectives AH , which are free Mackey func-
tos on one element in a given isotropy H. Further, an injective is
obtained by tensoring a principal projective with a divisible abelian
group, and enough injectives are given by (finite) products of princi-
pal injectives. (The reason finite products are sufficient is that there
are finitely many isotropies.) The projectives and injectives in Mackey
functors also supply enough projectives resp. injectives in F -colocal
Mackey functors by applying colocalization to them. As a part of our
indcution, we will also construct enough projectives and enough injec-
tives in Cλ,F0 . This is a somewhat different situation than in [?, ?, ?].

In more detail, considering the fact that restrictions of (??) to a
given isotropy has both a right and left adjoint, monomorphisms resp.
epimorphisms are functors (??) which are monomorphisms resp. epi-
morphisms on all isotropies in F . Thus, just as in the case of Mackey
functors, free additive functors (??) on elements of a given isotropy in
F are principal projectives whose direct sums are enough projectives in
C0,F0 , while tensoring principal projectives with divisible abelian groups



14 VIKTOR BURGHARDT, PO HU, IGOR KRIZ, AND PETR SOMBERG

are injective, and taking their (finite) products gives enough injectives
in C0,F0 .

Before beginning our induction, first note that, by definition, for
X ∈ Cλ≥0, Y ∈ C

µ
≥0, we have, by definition,

X ∧ Y ∈ Cλ+µ≥0 .

Smashing the exact triangle

τ 0≥1S → S → HA
with X ∈ Cλ0 , we therefore get an exact triangle

X1 → X → HA ∧X, X1 ∈ Cλgeq1.

Considering the long exact sequence in πλ∗ , this gives

τλ≤0(HA ∧X) = X,

thus giving a module structure (up to homotopy)

HA ∧X → τλ≤0(HA ∧X)→ X.

This can be refined to an A∞-associative odule structure using ob-
struction theory (by connectivity), which is in turn equivalent to an
E∞-module structure, since HA is E∞.

Thus, we obtain an additive functor

(40) Cλ0 → HA-Mod.

Using the same method, or an HA-module X, the morphism

X → τλ≤0X

is a morphism of E∞-HA-modules. Thus, we obtain a lifting of our
t-structure to the derived category of HA-modules, which is equivalent
to the derived category of Mackey functors. Since this comes from “un-
derlying point-set structures,” as mentioned above, we automatically
obtain a t-functor

(41) Fλ : DCλ0 → DA,
where the t-structure on the right-hand side is the one just defined.

By [?], Lemma 1.4, to finish the proof of our theorem, we must show
that (??) gives isomorphisms on derived Hom’s of objects in Cλ,F0 , i.e.

(42) Extn
Cλ,F0

(M,N)
∼=
Fλ

// Extn
C0,F0

(M,N), M,N ∈ Cλ,F0 .

As advertised, we shall prove (??) for M,N colocal on a family F by
induction on the number of elements of F . Concretely, we shall assume
that the statement holds for FF [H], and prove it for F . By induction,
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we have enough projectives and injectives on FF [H]-colocal objects of
DCλ0 . Since j! preserves projectives and j∗ preserves injectives, objects
smashed wth EFF [H]+ can be factored out from M and N in (??).

Thus, to complete the induction step, we need to first of all exhibit
the Cλ0 -substitute for the F -colocal principal projective AH . To this
end, by the periodicity, we may assume λH ≤ 0, and use

(43) ( ˜(EFF [H])−λH ∧HAH)[λH ] ∈ Cλ0
where the subscript in the first term means a G-space skeleton (and
the tilde denotes unreduced suspensions). Similarly, if Q is obtained
by AH by tensoring with a divisible abelian group, we can use

(44) F ( ˜(EFF [H])−λH , HQ)[−λH ] ∈ Cλ0
for Cλ0 -principal injectives supported in isotropy H.

Regarding resolutions, we see that using (??) resp. (??) will only
differ from C00 -resolutions of an object supported in isotropy H by an
FF [H]-colocal object, which will not affect Ext. Thus, the induction
is complete. �
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