
ON SMITH-STONG'S SELF-CONJUGATE COBORDISM

CHALLENGE

PO HU, IGOR KRIZ, BENJAMIN RILEY AND PETR SOMBERG

Abstract. We give a complete algebraic computation of self-
conjugate cobordism groupsMSC∗, which has been an open prob-
lem since the 1960's. Our approach is based on several new ideas,
including structured homotopy theory, new aspects of formal group
laws and variants of the Adams-Novikov spectral sequence, and the
motivic loop of Gheorghe, Isaksen, Wang and Xu. We also obtain
new results on cobordism with antilinear involution.

1. Introduction

On the subject of self-conjugate cobordism, Smith and Stong [54]
wrote in 1968: �To completely discourage any computational desires one
has...� followed by a presentation of the �rst �ve groups. Accordingly,
in the subsequent decades, a complete computation of self-conjugate
cobordism groups was considered hopeless.
The purpose of the present paper is to partially answer this challenge

by proving that self-conjugate cobordism groups are isomorphic to the
Ext-groups of a certain polynomial ring acting in an explicit way on the
complex cobordism ring. In agreement with [54], explicit calculations
of these Ext-groups remain very di�cult. Our result uses a variety of
techniques, including new insights on formal group laws, the philosophy
of Gugenheim-May on the cohomology of homogeneous spaces [20],
spectral algebra (see e.g. [13, 22, 40, 39]), as well as the motivic loop
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technique of Gheorghe, Isaksen, Wang, and Xu [14, 15, 30] (for recent
related developments, see also [2, 10, 16, 49, 11]).
To present the history in a more ordered fashion, the problem of

computing the ring of complex cobordism groupsMU∗, i.e. the complex
version of Thom's problem [55], was solved in 1960 by Milnor [41] and
Novikov [45, 47]. The complex cobordism spectrum MU , along with
Atiyah's K-theory [4], were two generalized cohomology theories which
played a key role in the development of modern algebraic topology.
Studying the e�ect of complex conjugation on these theories was a

next logical step. This can be done in at least two di�erent ways:
It is possible to consider self-conjugate structures, which are complex
structures (e.g. manifolds or bundles) equipped with an antilinear au-
tomorphism. On the other hand, one can make an antilinear involution
a part of the structure and study it Z/2-equivariantly. This is often
referred to as a Real structure.
In the case of K-theory, the two approaches are related in a rela-

tively simple way. Real K-theory KR was introduced by Atiyah in his
elegant proof of real Bott periodicity [5]. Self-conjugate K-theory was
considered and calculated by Anderson [1] and Green [19]. Speaking
equivariantly, self-conjugate K-theory KSC turns out to be the co�ber
of the Euler class of the complex sign representation on KR, thus ex-
plaining it completely.

In cobordism, the situation is rather di�erent. The Z/2-equivariant
Real cobordism spectrum MR was de�ned by Landweber [34], and fur-
ther investigated by Araki [3]. The coe�cient ringMR? was eventually
calculated by Hu and Kriz [25], and later used, along with its variants,
by Hill, Hopkins and Ravenel [21] in their solution of the Kervaire-
Milnor problem. It is worth noting that due to the behavior of equi-
variant transversality, the equivariant Thom spectrum MR does not
actually calculate the corresponding cobordism groups of manifolds,
which were characterized by Hu [24] as homotopy groups of suspension
spectra, making them essentially uncomputable by current methods.

The spectrum MSC of self-conjugate cobordism, on the other hand,
was studied by Smith and Stong [54]. It is de�ned as the Thom spec-
trum of the pullback of the tautological element of K0BGL to BSC,
which is de�ned as the homotopy equalizer

(1) BSC // BGL
A 7→(AT )−1

//

Id
// BGL
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(BGL is homotopically equivalent to BU , but we write BGL to em-
phasize the fact that the construction makes sense algebraically, which
will be relevant below.)
Despite the analogy with KSC, the spectrum MSC is not a part

of the Z/2-equivariant Real cobordism spectrum MR. In fact, MSC
turns out to be much more complicated than MR. For example, the
group MSC1 is Z/4 [18]. To give another example, the image of the
map MSC4 →MU4 is generated by an Enriques surface (by computa-
tion of Chern numbers). The homotopy groups of the spectrum MSC,
which are the geometrically de�ned cobordism groups of manifolds with
self-conjugate complex structures on their normal bundles, resisted cal-
culation until the present time. It is worth noting that these groups
have no p-torsion for p 6= 2, and their localization at p 6= 2 was in fact
calculated by Smith and Stong [54]. The challenge lies in calculating
their 2-primary torsion.
The goal of this paper is to introduce a completely algebraic machine

(using the homological algebra of formal groups) which gives a complete
calculation of MSC∗, even though the answer is too complicated to be
written out in closed form.

Concretely, using formal group law theory, we construct an explicit
action of a certain polynomial algebra A = Z[α1, α2, α3, . . . ] on MU∗
where αi has topological degree −2i (graded homologically), and a
spectral sequence

(2) Es,t
2 = Exts,tA (Z,MU∗)⇒MSC∗.

Our main result is

1. Theorem. The spectral sequence (2) collapses and there are no Z-
multiplicative extensions. In other words, the self-conjugate cobordism
groups are given by

(3) MSCn =
⊕
t−s=n

Exts,tA (Z,MU∗).

The spectral sequence (2) comes from a certain descent resolution of
MSC by copies of MU , which we construct using spectral algebra [13,
22, 40, 39]. The key point is that our spectral sequence is di�erent from
the classical Adams-Novikov spectral sequence [46]. This possibility is
enabled by the fact that MU∗MSC is not a �at MU∗-modules. Our
spectral sequence can be considered as being based on a �fully derived"
MU -resolution. However, having an explicit model for the resolution
gives us an explicit �at Hopf algebroid whose Cotor is the E2-term,



4 PO HU, IGOR KRIZ, BENJAMIN RILEY AND PETR SOMBERG

and whose structure maps we can understand. After some additional
manipulations, we see that, at least locally at 2, the E2-term has the
extremely formally simple form shown in (2). More detail of this outline
is given in section 2 below.

An important feature of the spectral sequence (2) is that the polyno-
mial algebra A acts trivially on the unit of the ring MU∗, and thereby
the polynomial generators of A give rise to Ext1-elements. These el-
ements are, in fact, permanent cycles (represented by real projective
spaces and Landweber manifolds). This form of the spectral sequence
(2) is, in fact, formally similar to the situation of Gugenheim-May [20],
which contains a theorem computing the cohomology of certain homo-
geneous spaces by collapse without extensions of a spectral sequence,
similarly as in Theorem 1. A substantial di�erence is that [20] deals
with ordinary cohomology, and the collapse theorem of that paper uses
di�erential graded algebra. In our present context, we are dealing with
spectral algebra, which is quite a bit more complicated.
A key new tool we use is the fact that our situation has an analogue

in motivic homotopy theory over C [42, 27, 26], for which a link with
di�erential graded algebra was discovered by Isaksen [29] (see also Ghe-
orghe [14], Gheorghe, Wang and Xu [15]). This method was used by
Isaksen, Wang, and Xu [30], as well as Burkland and Xu and others (see
e.g. [11]) to make new computations of homotopy groups of spheres.
Other recent developments and applications of these techniques are
described for example in [2, 6, 10, 16, 49]. An important ingredient
of these applications is the use of comparisons involving the classical
Adams spectral sequence. In the present paper, we use this method in
a somewhat new way, exploiting directly a link between di�ferentials
in our spectral sequence and the appropriate concept of torsion in the
motivic situation.

The present paper is organized as follows: In Section 2, we outline the
philosophy of our proof, highlighting the main new ideas. In Section
3, we describe the Hopf algebroid in a simpler case of the spectrum
MO[2], which is a precursor to our main computation. In Section 4,
we discuss the case of the Hopf algebroid for MSC. In Section 5, we
prove Theorem 1. Finally, in the Appendix, we recall some classical
results which have been obtained by previous authors, and which are
implicit in our discussion.
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2. The main ingredients of the proof of Theorem 1

Our proof of Theorem 1 is based on several modern techniques which
were not available at the time when the problem of computing MSC
was �rst proposed [54]. Because of this, we use the present section to
outline the new ideas �rst before presenting our argument in detail.

2.1. Spectral commutative rings. In the construction of our spec-
tral sequence, we use strictly commutative spectral rings (i.e. E∞-ring
spectra [38, 13]) In that category, we have a morphism

MSC →MU,

and our spectral sequence is obtained by taking the cobar resolution of
MU over

MU ∧MSC MU.

The E1-term is the cobar complex of a Hopf algebroid (i.e. coordinate
ring of an a�ne groupoid scheme) which is �at and has a surprisingly
simple description. At least 2-locally, (which is the only non-trivial
prime in our case), its Cotor (i.e. E2-term of our spectral sequence)
has the form (2).

In fact, to make these conclusions, we also study the spectrumMO[2],
which represents the cobordism of manifolds M with a real bundle ν
and an isomorphism

τM ⊕ ν ⊕ ν ∼= N

where N is a trivial bundle. Then MO[2] can be described as the
spectrum associated with the prespectrum (D2n) where

(4) D2n = BO(n)2γnR

and the connecting map Σ2D2n → D2n+2 given by the obvious iso-
morphism of the pullback of 2γn+1

R to BO(n) with 2γnR ⊕ 2. We refer
to MO[2] as the double real cobordism spectrum. This spectrum was
studied before, although not extensively (see for example Kitchloo and
Wilson [32]).
To connect with MSC, note that one can think of BO(n) as the

classifying space of complex n-bundles with an antilinear involution,
so (4) can also be characterized as BO(n)γ

n
C where γnC is the universal

complex n-bundle. On the other hand, BSC(n) is the classifying space
of complex n-bundle with an antilinear automorphism which is not
necessarily an involution. Thus, MSC is de�ned in the same way, with
(4) replaced by BSC(n)γ

n
C .
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Complexi�cation BO(n) → BU(n) therefore induces a canonical
morphisms of E∞-ring spectra

(5) MO[2]→MSC →MU.

We �rst calculate the simpler Hopf algebroid (MU∗,MU ∧MO[2] MU∗),
which is a precursor for the spectral sequence (2).

2.2. Recti�ed Adams-Novikov spectral sequences. The spectral
sequences for calculatingMSC∗ andMO[2]∗ are similar to the Adams-
Novikov spectral sequence in the sense that they use a resolution by free
MU -modules, but the cobar complex is not the same as the Adams-
Novikov cobar complex. This behavior arises due to the fact that
MU∗MSC, MU∗MO[2] are not �at MU∗-modules (see the Comment
under Theorem 6 below).
We call our spectral sequence recti�ed Adams-Novikov spectral se-

quences because their E2-terms are described as Ext-groups of partic-
ularly nice new Hopf algebroids

(6) (MU∗, (MU ∧MO[2] MU)∗) = (L,LS)

and

(7) (MU∗, (MU ∧MSC MU)∗) = (L,LSC).

It is, essentially, a derived form of the Adams-Novikov spectral se-
quence. However, �nding a purely algebraic description of those Hopf
algebroids is a key part of our method. The description is based on
carefully studying the formal group law structures involved. The idea
of using additional structure on formal group laws in the investiga-
tion of MSC is not new (see, notably, Buchstaber and Novikov [8, 9]).
However, the structure of 2-valued formal group laws used in [8, 9] is
not a perfect match here. What is needed for investigating MSC is in
fact precisely the structure represented by our novel Hopf algebroids.
These structures are new and quite subtle (see Comment at the end of
Section 3). Calculating (6) leads to a calculation of (7) using the Witt
construction and structural results on bipolynomial Hopf algebras [51].
In the case of MSC, the particularly simple E2-term then allows an

argument proving collapse. The situation is similar to the paper by
Gugenheim and May [20], although the present situation is homotopi-
cal, not homological, and therefore methods of spectral algebra, which
are quite di�erent from the methods of di�erential graded algebra used
in [20], are required.
While the calculation of the Hopf algebroid (6) is a crucial step in

calculating the Hopf algebroid (7), the E2-term of the resulting spectral
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sequence forMO[2] is more complicated than forMSC, and we do not
have a collapse theorem in that case. It is worth noting that we do
not really know any di�erentials in the case of MO[2], and certain
surprising elements survive (see Comment at the end of Section 5).
Therefore, the possibility of collapse of the recti�ed Adams-Novikov
spectral sequence for MO[2] remains an interesting question.

2.3. The motivic loop and Novikov formality. The last ingredient
in the proof of Theorem 1 is the recent motivic loop technique of Gheo-
rghe, Isaksen, Wang and Xu [14, 15, 29, 30]. Isaksen [29] noted that the
homotopy groups of the C-based motivic spectrum SMot/τ are isomor-
phic to the E2-term of the classical Adams-Novikov spectral sequence.
Gheorghe [14] proved that SMot/τ is an E∞ ring spectrum, and showed
that the isomorphism preserves higher products. Gheorghe, Wang, and
Xu [15] established a categorical level equivalence.
Theorem 1 identi�es MSC as another example (in addition to the

trivial example MU) of an ordinary spectrum with a similar behavior,
i.e. for which a derived Adams-Novikov resolution gives a complete
calculation of homotopy groups. This suggests a term Adams-Novikov-
formal spectra for such examples, even though it is at present di�cult
to give a precise de�nition.
While the theory of Gheorghe, Isaksen, Wang, and Xu involves mo-

tivic spectra, it has made a large impact on computations of classical
stable homotopy groups. Isaksen, Wang and Xu [30] (see also Burkland,
Xu [11]) used this machinery to greatly expand the known calculations
of stable homotopy groups of spheres. The case of MSC is somewhat
di�erent: it is simpler in the sense that the algebraic objects involved
are simpler: we are talking only about the cohomology of a polynomial
algebra. On the other hand, it is more complicated in the sense that
the answer is bigger.
Roughly speaking, when a spectrum has a motivic version de�ned

over C, then we can also consider its reduction to the Gheorghe-Isaksen-
Wang-Xu motivic spectrum SMot/τ , where, by their theorem, the de-
rived Adams-Novikov-type spectral sequence collapses (the special �ber).
On the other hand, when we invert τ , we get the situation of classical
homotopy theory (the generic �ber). In the motivic setting over C (the
mixed characteristic), the higher di�erentials of the derived Adams-
Novikov-type spectral sequence (whose E2-term, in our case, is a poly-
nomial algebra with generator τ over the corresponding E2-term over
SMot/τ), correspond exactly to τ -torsion of the motivic spectrum in
question.
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Our particular use of the method of Gheorghe, Isaksen, Wang, and
Xu [29, 14, 15] is quite di�erent from the way it was applied by Isaksen,
Wang and Xu [30] and Burkland, Xu [11]. In our present setting, we
study the motivic recti�ed Adams-Novikov spectral sequence directly,
investigating the behavior of τ -torsion in the context of spectral alge-
bra. In [30], on the other hand, the main point is to use the additional
fact of coincidence of the Adams spectral sequence for SMot/τ with the
algebraic Novikov spectral sequence, which is then used to deduce facts
about the classical Adams spectral sequence di�erentials.
As far as explicit calculations of (3), due to the complicated nature

of formal group laws, a closed form answer is not known. However, for
the purpose of practical calculations, there is a suitable �ltration on the
cobar complex which leads to an algebraic spectral sequence, on whose
E1-term the algebra A considered above acts trivially. This spectral
sequence therefore has a parabolic vanishing curve with asymptotic
slope 0. Concrete computations using symbolic algebra were carried
out by Riley [53]. We will discuss this approach in Section 4 below.

3. The rectified Adams-Novikov spectral sequence for

MO[2]

Virtually all the spectral sequences used to calculate stable homo-
topy groups (such as the Adams spectral sequence, the Adams-Novikov
spectral sequence, see [50] for a quick review) are spectral sequence of
descent type, using the standard construction of Godement [17]. In
the present paper, we work in the ∞-category of R-modules where R
is an E∞-ring spectrum over which the complex cobordism spectrum
MU is an E∞-algebra (for foundations, see [38, 13]), where concretely
R = MO[2] and R = MSC, and the monad (i.e. standard construc-
tion) on R-modules is

M 7→M ∧RMU.

(Comment: In this paper, by ∞-category we mean a derived category
with some point-set theoretical underpinning in which we can do topo-
logical limits and colimits. This can be accomplished using the quasi-
categorical setup of [39], but we are also equally happy to work in the
more classical approach of topological categories used, for example, in
[38, 13]. For e�orts on formally unifying approaches to ∞-categories,
see e.g. [7, 52].)
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The corresponding descent spectral sequences, converging toMO[2]∗,
MSC∗, have E2-term which can be expressed as

ExtΓ(A,A) = CotorΓ(A,A)

where the Hopf algebroid (A,Γ) is the Hopf algebroid (6) in the case of
MO[2] and (7) in the case of MSC provided that the Hopf algebroid
is su�ciently nice (in the sense that Γ is �at over A). We refer to these
spectral sequences as the Recti�ed Adams-Novikov spectral sequence for
MO[2] resp. MSC.
Additionally, the spectral sequences automatically converge to their

target assuming that the connectivity of the iterated �bers increases.
Both conditions turn out to be true in our case. However, this requires
a calculation of the Hopf algebroids (6), (7).
In the present section, we give a complete algebraic computation of

(6), which is simpler. More than a warm-up, the result of the present
section is actually a precursor of the computation of the Hopf algebroid
for the case of MSC, which is our main point of interest.

3.1. The Hopf algebroid (L,LS). It is well known that MU∗ = L
is the Lazard ring which supports the universal formal group law. Ad-
ditionally, the Landweber-Novikov Hopf algebroid (MU∗,MU∗MU) =
(L,LB) [35, 46] has

LB = L[b1, b2, . . . ]

where bi are thought of as the coe�cients of a series

b(x) = x+
∑
i>0

bix
i+1

where f : F → G represents strict isomorphisms from a given formal
group law to another formal group law ([50], Appendix A2).
We shall now describe a Hopf algebroid (L,LS) as follows: Suppose

we write

(8) b(x) = x+ s(x)[2]x

where
s(x) =

∑
i>0

six
i,

and that we simultaneously impose the relation

(9) xi(x) = b(x)b(i(x))

where i(x) = [−1]x is the inverse series. Plugging in (8) into (9), we
get

(10) s(x)i(x)[2]x+ xs(i(x))[−2]x+ s(x)s(i(x))[2]x[−2]x = 0.
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Now clearly [−2]x = i([2]x) is divisible by [2]x, so (10) can be further
rewritten as

(11) s(x)i(x) + xs(i(x))
[−2]x

[2]x
+ s(x)s(i(x))[−2]x = 0.

However, we claim that (10) is once more divisible by [2]x. To this end,
note that

[−2]x

[2]x
≡ −1 mod [2]x,

so modulo [2]x, (11) has the form

s(x)i(x)− xs(i(x)) = s(x)(i(x)− x) + x(s(x)− s(i(x))),

which is divisible by x− i(x), which in turn is a unit multiple of

x−F i(x) = [2]x.

Thus, denote by

g(x) =
∑
n≥1

gnx
n

the ratio of the left hand side of (11) by [2]x. Then we have

(12) g2n = ±s2n mod I

where I is the augmentation ideal of L[s1, s2, . . . ]. We will see later us-
ing topology that the relations g2n+1 actually follow from the relations
g2n. Thus, we can de�ne the Hopf algebroid (L,LS) by

(13) LS = L[s2n+1 | n ≥ 0] = L[sn | n ≥ 1]/(g2n | n ≥ 1).

3.2. The E2-term of the recti�ed Adams-Novikov spectral se-

quence for MO[2]. We are now ready to state and prove the main
result of the present section, identifying the E2-term of the recti�ed
Adams-Novikov spectral sequence converging to MO[2]∗.

2. Theorem. (1) We have LS ∼= MU ∧MO[2] MU∗.
(2) The recti�ed Adams-Novikov spectral sequence for MO[2] has the

form

(14) Cotor(L,LS)(L,L)⇒ π∗MO[2].

Proof. We begin by computing MU ∧MO[2] MU∗. This is a connective
spectrum of �nite type, so we can compute one prime at a time. At
p > 2, we have

H∗MO[2] ∼= H∗BO ∼= Z/p[p1, p2, . . . ]

so H∗(MO[2],Z/p) is a direct sum of even suspensions of P ∗ = A∗/(β)
by the Milnor-Moore theorem, and hence MO[2] is a wedge of even
suspensions of copies of BP , which map by (5) equivalently to wedge
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summands of MU . We conclude that MU ∧MO[2]MU∗ = LS locally at
an odd prime.
To compute at p = 2, we �rst use the Eilenberg-Mac Lane spectral

sequence

(15) TorH∗MO[2](H∗MU,H∗MU)⇒ H∗MU ∧MO[2] MU.

We have

(16) H∗(MO[2],Z/2) ∼= H∗(BO,Z/2) = Z/2[a1, a2, . . . ]

where |ai| = i, while we can write

H∗(MU,Z/2) = H∗(BU,Z/2) = Z/2[a2, a4, . . . ].

Thus, the E2-term of the spectral sequence (15) is

(17) ΛZ/2[b1, b3, . . . ]

where b2i+1 has topological dimension 2i+ 1 and Tor-dimension 1 and
thus, total dimension 2i + 2. Additionally, since homological suspen-
sion preserves Dyer-Lashof operations, by considering the Dyer-Lashof
operations in H∗BO ([48]), in homology, (17) becomes

(18) Z/2[b4i+1 | i ≥ 0]

where |b4i+1| = 4i + 2. Thus, by Milnor-Moore's theorem, again,
H∗(MU ∧MO[2] MU,Z/2) is a direct sum of even suspensions of P∗,
and hence also at 2, MUMO[2]MU is a wedge of even suspensions of
copies of BP with the correct number of terms in each degree.
In fact, this is also true multiplicatively, so we know that

MU ∧MO[2] MU∗ = MU∗[s1, s3, . . . ]

where |s2i+1| = 4i+ 2.
Additionaly, considering the canonical map

(19) MU∗MU →MU ∧MO[2] MU∗,

we get from the Bockstein spectral sequence that

(20) 2si = bi mod decomposables.

We also now know that (19) is onto rationally and that the target has
no torsion.
To identify the elements si precisely, we �rst recall that considering

the standard complex orientation x ∈ MU∗CP∞, and identifying it
with the element of (MU ∧MU)∗CP∞ by composing with the left unit
ηL : MU →MU ∧MU , then composing with the right unit,we obtain
the element b(x) ∈ (MU ∧ MU)∗CP∞. Similarly, if we use RP∞
instead of CP∞, we get the same result modulo [2]x. However, the
two maps RP∞ → MU ∧MO[2] MU using the left and right unit must
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coincide, since the orientation RP∞ → MU factors through MO[2].
Thus, we deduce that in MU ∧MO[2] MU∗, b(x) must be congruent to
x modulo [2]x, and thus, the elements si de�ned by (8) must exist in
MU ∧MO[2]MU∗. We further see from (20) that s2i+1 coincide with the
expected generators (since the leading term of [2]x is 2x).
To identify the precise relations between these elements, consider the

second Chern class

c2 : BU(2)→ Σ4MU.

Composing with the canonical inclusions

CP∞ → BO(2)→ BU(2),

the second Chern class becomes

xi(x)

where x is the complex orientation. If we compose with the left resp.
right unit to MU ∧MU , we get xi(x), b(x)b(i(x)), respectively. How-
ever, since the composition factors throughMO[2], inMU∧MO[2]MU∗,
(9) must hold. This proves the relations we established. (We can di-
vide [2]x twice since there is no torsion.) Further, it proves that the
odd-degree part of (9) can generate no further relation, since we know
from the above calculation that the elements s2i+1 are algebraically
independent.

�

Comment: The question of a moduli interpretation of the Hopf
algebroid (L,LS) is a natural one. We completed the calculation by
embedding into the rationalization of the Hopf algebroid (L,LB) rep-
resenting the groupoid of formal group laws and strict isomorphisms.
We imposed congruence of the strict isomorphism to the identity mod-
ulo the 2-series [2]Fx, which caused us to allow some division of the
coe�cients of the reparametrization series, and then we imposed the
condition that the strict isomorphism preserve the series xi(x) (the
parameter of the Buchstaber-Novikov 2-valued formal group [8, 9]),
which caused the even-degree coe�cients to become polynomial func-
tions of the odd-degree ones. Thus, we can say that LS represents strict
isomorphisms which are identity on the 2-torsion of the formal group,
and preserve the coordinate of the 2-valued formal group. However, this
should be considered more of a metaphor than a precise statement.



SELF-CONJUGATE COBORDISM 13

4. The rectified Hopf algebroid for MSC

In Section 3, we calculated the Hopf algebroid (6). In this section,
we shall calculate the Hopf algebroid (7). Again, locally at an odd
prime, there is nothing to prove, as MSC is just a wedge of copies of
BP (see [33, 54]).

4.1. Computation of (MU ∧MSC MU)∗. At the prime 2, we again
need to calculate (MU ∧MSC MU)∗. As in the proof of Theorem 2,
we again �rst calculate H∗(MU ∧MSC MU,F2). To this end, we recall
from [33] that we have

(21)
H∗(MSC,F2) = H∗(MU,F2)⊗ Λ(a1, a3, . . . ) =
F2[a2, a4, . . . ]⊗ Λ(a1, a3, . . . )

where, comparing with (16), the map H∗(MO[2],F2)→M∗(MSC,F2)
is realized by reduction modulo a2

2i+1. Thus, again, we have a spectral
sequence

(22) H∗(MU,F2)⊗ TorΛ(a1,a3,... )(F2,F2)⇒ H∗(MU ∧MSC MU,F2).

Using the homology of an exterior algebra in characteristic 2, the left
hand side of (22) is

(23) H∗(MU,F2)⊗ Λ(b1,i, b3,i, . . . , i = 0, 1, . . . )

where b2j+1,i is the ith transpotence of b2j+1, and thus has topological
dimension (2j+1)·2i and Tor-dimension si. Therefore, all elements are
in even total dimension, and thus, the spectral sequence (22) collapses
fo E2. As in Section 3, using Dyer-Lashof operations, we see that the
square of b2j+1,i is represented by b4j+3,i, and thus, it is possible to write

(24) H∗(MU ∧MSC MU,F2) = H∗(MU,F2)⊗ F2[b4j+1,i | i, j ∈ N0].

From (24) and the Milnor-Moore theorem, we can write
(25)
H∗(MU ∧MSC MU,F2) = P∗ ⊗ F2[xi | i 6= 2k]⊗ F2[b4j+1,i | i, j ∈ N0]

and hence the Adams spectral sequence also collapses to E2 and we
can write

(26) π∗(MU ∧MSC MU)∧2 = MU∗[b4j+1,i]
∧
2 .

Noticing that the total dimensional degree of b4j+1,i is (2j + 1) · 2i+1,
which runs through all even degrees, comparing to the odd prime com-
putation, and using �nite type, we can then simply change notation to
write

(27) LSC = MU ∧MSC MU∗ = MU∗[b
′
1, b
′
2, . . . ]

where the dimensional degree of b′i is 2i.
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4.2. Computation of the Hopf algebroid (L,LSC). To begin our
work on identifying the E2-term of the recti�ed Adams-Novikov spec-
tral sequence converging to MSC∗, �rst note that in fact, we can fur-
ther identify these elements by composing with the Hurewicz homo-
morphism into

(28) H∗(MU ∧MSC MU,Z) = H∗(BU ×BSC BU,Z)

(which follows from the Thom isomorphism). We can identify BU×BSC
BU with

(29) BU ×BU/BSC ∼ BU ×BU
where on the left hand side of (29), the second copy of BU is identi�ed
with the antidiagonal in BU ×BU . The right hand side of (29) follows
from the �bration sequence

(30) BSC // BU
1−? // BU.

Thus, the Thom isomorphism identi�es

(31) H∗(MU ∧MSC MU,Z) = H∗(MU ∧BU,Z)

where H∗BU = Z[b′1, b
′
2, . . . ] are the usual generators.

We can consider a diagram

(32)

LB = MU∗[B1, B2, . . . ]

tthhhhh
hhhh

hhhh
hhhh

h

��

LS = MU∗[s1, s3, . . . ]

**VVVV
VVVV

VVVV
VVVV

VV

LSC = MU∗[b1, b2, . . . ].

(We used capital letters in the top term to avoid a confusion between
LB and LSC, which are isomorphic graded algebras.) It is convenient
to write

B(x) = x+B1x
2 +B2x

3 + . . . , b(x) = x+ b1x
2 + b2x

3 + . . . ,

B(x) = B(x)/x, b(x) = b(x)/x.

Then the vertical map (32) is given by

(33) B(x) 7→ b(x)/b(i(x))

where i(x) is the universal formal inverse. We see that our relation (9)
translates to

B(x)B(i(x)) = 1,
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which holds. Writing

B(x) = x+ s(x)[2]x, s(x) = s(x)/x,

we get

B(x) = s(x)[2]x+ 1.

To compute the composition law on (L,LSC), recall that the compo-
sition law on (L,LB) is given by

(34) ∆(B(x)) = B1 ◦B2(x)

where B1 = B⊗1, B2 = 1⊗B. Thus, we are looking for a composition
law on (L,LSC) which would be compatible with the map (33). To
this end, we note that (33) gives

(35) B(x) 7→ b(x)i(x)

b(i(x))
.

When calculating composition, we must keep in mind that the inverse
transforms by the right unit in composition. Putting, for a series g(x) =
x+ . . . ,

(36) ig(x) = g(i(g−1(x))),

using (35), and denoting

∆(b)(x) = φ(x),

we get by (34)

(37)
b1(g(x))ig(g(x))

b1(ig(g(x)))
=

φ(x)

φ(i(x))
· i(x)

where

g(x) =
b2(x)i(x)

b2(i(x))
.

Using (36), we get

b1(
b2(x)i(x)

b2(i(x))
) · b2(i(x))x

b2(x)

b1(
b2(i(x))x

b2(x)
)

=
φ(x)

φ(i(x))
· i(x).

This leads to the natural guess

(38) φ(x) = ∆(b(x)) = b1(
b2(x)i(x)

b2(i(x))
) · b2(i(x))

i(x)

where

b1 = b⊗ 1, b2 = 1⊗ b.



16 PO HU, IGOR KRIZ, BENJAMIN RILEY AND PETR SOMBERG

The unit axiom follows immediately by replacing b1(x) resp. b2(x) with
x.
To verify associativity, putting

b1 = b⊗ 1⊗ 1, b2 = 1⊗ b⊗ 1, b3 = 1⊗ 1⊗ b,

z =
b3(x)i(x)

b3(i(x))
, z =

b3(i(x))x

b3(x)
,

we get

(1⊗∆)∆b(x) = b1(
b2(z) · b3(i(x))x

b2(z)b3(x)
) · b2(z) · b3(x)

xi(x)

while

(∆⊗ 1)∆b(x) = b1(
b2(z) · z
b2(z)

) · b2(z)

z
· b3(i(x))

i(x)
.

It is immediate that both expressions are equal.

3. Theorem. The Hopf algebroid structure on (L,LSC) is determined
as follows: The left unit is the inclusion, the right unit is the right unit
in (L,LB) composed with (35). The augmentation sends b(x) 7→ 1,
and the coproduct is given by (38).

Proof. As a warm-up, we begin by reformulating the structure formulas
of (L,LB). As seen in [50], Theorem A2.1.16, it su�ces to give the
structure formulas in the Hopf algebroid

(39) (HL,HLB) = (HZ∗MU,HZ∗MU ∧MU).

Using our above convention of using a bar to indicate division by x, we
get

(40) b1 ◦ b2(x) = b1(b2(x)) · b2(x).

Now if we write
b2 : F → G,

then
b2(expF (x)) = expG(x),

while
expG(x) = ηR(expF (x))

(where ηR is applied on coe�cients). Thus, (40) implies

(41) b1 ◦ b2(expF (x)) = b1(ηRexpF (x)) · b2(expF (x)).

In other words, letting

(42) b(expF (x)) = x+ g1x
2 + g2x

3 + . . . ,

then

(43) b′i 7→ gi
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gives a morphism of Hopf algebroids

(Z,Z[b′1, b
′
2, . . . ]) 7→ (HL,HLB)

where

(Z,Z[b′1, b
′
2, . . . ]) = (Z, H∗BU)

is the standard Hopf algebra coming from the loop space structure on
BU , i.e.

ψ(b′i) =
∑
j+k=i

b′j ⊗ b′k.

Having derived this formula algebraically, we can also see it geometri-
cally, applying the Thom isomorphism to (39). Of course, saying that
this determines the Hopf algebroid structure on (L,LB) would be mis-
leading, since to apply this algebraically, we would �rst need to have
the formula for ηR.
However, putting

(44) (HL,HLSC) = (HZ∗MU,HZ∗MU ∧MSC MU),

we already know that the right unit is determined by applying the right
unit in (L,LB), followed by (33). Thus, applying the same geometric
argument, we see that (43), (42) de�ne a morphism of Hopf algebroids

(45) (Z, H∗BU)→ (HL,HLSC).

Comparing this with our algebraic formula, we see that (38) gives

∆b(x) = b1(
b2(x)i(x)

b2i(x)
) · b2(x).

Comparing this with (33), we see that our algebraic formula for ∆ in
(HL,HLSC) agrees with the morphism of Hopf algebroids (45). Since
we know the right unit a priori, the formula (38) is proved. To �nish
proving the statement of our theorem, it su�ces to identify the image
of LSC in HLSC, which, however, follows from our spectral sequence
computation, and from analogous consideration at primes p > 2. �

4.3. The Witt construction. To understand better the Hopf alge-
broid structure of (L,LSC), recall that it su�ces to work locally at
the prime p = 2. The advantage of working locally is that we can
pro�t from the theorem by Ravenel and Wilson on the structure of
bipolynomial algebras [51, 28].
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We begin by describing the following generalization of a construction
of Husemoller [28]. Suppose (A,R) is a Hopf algebroid. An element
s ∈ R is called primitive if

(46) ∆(s) = 1⊗ s+ s⊗ 1 := (ηL ⊗ Id+ Id⊗ ηR)(s).

Note that a primitive element represents a class in

(47) Cotor1
(A,R)(A,A) = Ext1(A,R)(A,A).

4. De�nition. Let (A,R) be a Hopf algebroid and let S ⊆ R be a set of
primitive elements such that R = R0[S] for some A-algebra R. Then
the Witt construction (A,WS(R)) is de�ned by

WS(R) = R0[S × N0] = R0[si | s ∈ S, i ∈ N0]

where ∆(si) is determined by requiring that the �ghost component"

pisi + pi−1spi−1 + · · ·+ psp
i−1

1 + sp
i

0

be primitive. (Note: as usual, these elements are to be interpreted by
using the universal formulas which they imply in the absence of Z-
torsion.)

5. Lemma. The Hopf algebroid (A,WS(R)), up to isomorphism, only
depends on the images of the elements s ∈ S in (47).

Proof. TheWitt construction is a pullback of a diagram of a�ne groupoid
schemes

(48)

(X,Φ)
f // (•,Ga)

(•, G).

OO
π

OO

Changing the representatives of the cohomology classes corresponds to
choosing a morphism of a�ne schemes

w : X → Ga

and replacing f by g given on

α : x→ y

by

g(α) = f(α) + w(x)− w(y)
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where the addition denotes the operation in Ga. Therefore, the con-
clusion of the Lemma holds if we can lift w to G:

X
w //

  w

Ga

G.

OO
π

OO

The existence of lifting in our case follows from the fact that π is the
Spec of the unit of a polynomial algebra. �

6. Theorem. Let S = {s1, s3, . . . } ⊂ LS be the elements represented
by real projective spaces RP 4i+1, i ∈ N0. Then, locally at 2, we have a
canonical isomorphism of Hopf algebroids

(49) (L,LSC) ∼= (L,WSLS).

Proof. Since the Witt construction Hopf algebroid is commutative and
generated by elements s where ∆(s) does not involve any elements of
MU∗ of dimensional degree > 0, it is given by a coaction of a Hopf alge-
bra on a comodule algebra. Furthermore, this Hopf algebra is bipoly-
nomial. Similar conclusions apply also to the Hopf algebroid (L,LSC)
(see the proof of Theorem 3). Thus, we may apply Proposition 2.3 of
Ravenel and Wilson [51]. �

Comment: It is worth noting now that our spectral sequences con-
verging to MO[2], MSC, despite being based on resolutions by MU -
modules, are not the same as the Adams-Novikov spectral sequences
for these spectra. A way to see this is to consider the generator
a1 ∈MSC1 = MO[2]1, which corresponds to

(s1) ∈ Ext1LSC(MU∗,MU∗).

We see from (16) that applying the Hurewicz homomorpism

(50) π∗MO[2]→MU∗MSC → HZ/2∗MO[2],

the class a1 goes to the class a1. (This map is given, in fact, by taking
the �rst Stiefel-Whitney class of the speci�ed 1/2 of the stable nor-
mal bundle of RP 1, which is the Möbius strip.) Thus, the class a1

in the source of (50), which is 4-torsion, survives all the maps, and
hence the middle term of (50) must have 4-torsion (the case of MSC
is the same). We conclude that the Adams-Novikov cobar complexes
for MSC, MO[2] have torsion, while the recti�ed cobar complex does
not.
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s\t− s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Z 0 Z 0 Z2 0 Z3

1 (4) Z (2, 16) Z2 (8, 64) Z4

2 0 (2) (4) (2, 4, 8) (Z, 2, 4) (2, 42, 8, 32)

3 0 0 0 (2) (2)

4 0 0 0 0 0

1

Figure 1. Self-conjugate cobordism groups

Comment: The Witt construction can be described as a polynomial
coalgebra on generators in topological degrees 2j for j = 1, 2, . . . . Thus,
the E2-term of the recti�ed Adams-Novikov spectral sequence forMSC
can be described as (2).
On the other hand, there is a decreasing �ltration on the Witt

construction where for every primitive generator s, the iterated Ver-
schiebung si is 2i. This leads to an algebraic spectral sequence whose
E1-term is

(51) ExtA(Z,Z)⊗MU∗

where the polynomial generators of A act on Z trivially (which is forced
by dimensional degree). This leads to an analog of the May spectral
sequence, which only has non-zero terms for

t− s ≥ s2

For calculations ofMSC∗, see Figure 1 - the numbers indicate orders of
cyclic summands; thus, for example, the group in dimension t−s = 12,
s = 2 is Z/2⊕ Z/4⊕ Z/4⊕ Z/8⊕ Z/32.
For the E2-term of the algebraic spectral sequence (51), see Figure 2.

Subscripts of entries indicate their algebraic �ltration degrees. We can
see from the table that the algebraic spectral sequence has both higher
di�erentials and extensions. For example, there is a d2 from (t−s, s) =
(5, 1) to (t− s, s) = (4, 2). There is an extension in (t− s, s) = (7, 1).

5. The collapse of the rectified Adams-Novikov spectral

sequence for MSC

In this section, we prove Theorem 1. The proof has two parts. Frst,
we make an observation about invertibility of modules over an E∞-
ring spectrum which arises in the very special situation when we have
a convergent spectral sequence of the form (2). We then bring in tech-
niques of motivic homotopy theory to give the concrete argument in
our situation.
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s \ t− s 0 1 2 3 4 5 6 7 8
0 Z0 0 Z0 0 Z2

0

1 (4)1 Z2 (41, 161) (21,Z2,Z4)
2 0 (43) (42) (43, 163, 45)
3 0 0

s \ t− s 9 10 11 12
0 0 Z3

0

1 (221, 81, 641) (221,Z2
2,Z4,Z8)

2 (21, 41, 23,Z6) (223, 83, 643, 45, 165, 43)
3 (44) (47)

1

s \ t− s 0 1 2 3 4 5 6 7 8
0 Z0 0 Z0 0 Z2

0

1 (4)1 Z2 (41, 161) (21,Z2,Z4)
2 0 (43) (42) (43, 163, 45)
3 0 0

s \ t− s 9 10 11 12
0 0 Z3

0

1 (221, 81, 641) (221,Z2
2,Z4,Z8)

2 (21, 41, 23,Z6) (223, 83, 643, 45, 165, 43)
3 (44) (47)

1

Figure 2. The algebraic recti�ed Adams-Novikov
spectral sequence for MSC

5.1. Invertible modules. We begin with a general observation. Let
R be an E∞ ring spectrum and let α1, . . . , αn, · · · ∈ R∗ be elements,
and let M be an R-module. We are interested in the example

(52) R = MSC, M = MU.

Then we can form an R-module

(53) F(a1,...,an,... )(R) = holim
n

Σ1−nR/(α1, . . . , αn).

In fact, we can similarly form

(54) F(a1,...,an,... )(M) = holim
n

Σ1−nM ∧R R/(α1, . . . , αn).

The comparison

(55) M ∧R F(a1,...,an,... )(R)
∼ // F(a1,...,an,... )(M)

is a matter of convergence, although the map always exists canonically
and (55) holds in the case of (52). In our present setting, convergence
holds due to increasing connectivity of maps between the �bers

Σ−nR/(α1, . . . , αn+1)→ Σ1−nR/(α1, . . . , αn).

Now note further that in the case (52), F(a1,...,an,... )(M) maps into
our cobar MSC-resolution with a map inducing an isomorphism on
E2-terms. (This simply follows from the fact that the elements ai are
permanent cycles, a known fact which is recalled in the Appendix.)
Thus, we have

(56) F(a1,...,an,... )(M) ∼ R.

Together with (55), this implies, in fact, that F(a1,...,an,... )(R) is a strong
dual of M in the derived category DR of R-modules, and that in fact,
more strongly, both objects are invertible and inverse to each other.
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5.2. Motivic homotopy theory. To see how this implies the collapse
of our spectral sequence, we need to recall some more context, namely
the setting of motivic homotopy theory of Morel and Voevodsky [42].
This is a technique for studying homotopy theory of certain schemes
using motivic spaces, which means simplicial Nisnevich sheaves of sets.
One takes the simplicial homotopy category, localized at projections of
the form X × A1 → X. The theory works well for separated smooth
schemes of �nite type over a �eld, where calculations can be made,
culminating with Voevodsky's solution of the Bloch-Kato conjecture
[56].
There is also a category of motivic spectra (also described in [42]),

which arises by stabilizing the∞-category of based (=pointed) motivic
spaces with respect to smash-product with the simplicial S1-sphere, as
well as the multiplicative group Gm. A key point is that

S1 ∧Gm ∼ P1,

so one may equivalently stabilize with respect to the 1-dimensional
projective space P1. There is also a corresponding theory of E∞-ring
spectra, and hence spectral algebra [31, 23].
The∞-category of topological spaces is equivalent to the∞-category

of simplicial sets, which are motivic spaces. For this reason, every
ordinary topological spectrum has an avatar in the category of mo-
tivic spectra. However, in cases where the spectrum comes from some
type of geometrical construction, a more natural algebraic version often
presents itself. This is in particular the case of ordinary homology H
with coe�cients Z, complex K-theory K, and complex cobordismMU ,
whose appropriate algebraic versions represent motivic cohomology, al-
gebraic K-theory of smooth schemes, and algebraic Thom cobordism
MGL [42, 37].
Speci�cally in the case of MGL, one builds the universal motivic

Thom space BGL(n)γn of n-bundles by taking the colimit over N of
the one-point compacti�cation of the total space of the tautological
bundle of the Grassmannian variety of n-vector subspaces in An+N .
One has a canonical map

P1 ∧BGL(n)γn → BGL(n+ 1)γn+1 ,

thus giving rise to the algebraic cobordism spectrum MGL. A more
careful version of this construction also gives an E∞-ring spectrum [31].

It is noteworthy from our point of view that due to fact that the
map (1) also has a natural algebraic version, we have, by a similar
construction, a motivic version MSCMot of the spectrum MSC. (For
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the purposes of this paper, we shall only work in the 2-complete mo-
tivic category over the �eld C, suppressing the completion from the
notation.)

De�ning the motivic category by Morel and Voevodsky [42] was an
important milestone, but the de�nition itself gives little hint why we
could calculate anything using this method. An algebraic topologist
might say that we can calculate quite a bit if we know the cohomology
of a point. Motivically, we typically don't, but due to Voevodsky's fun-
damental theorem [56], we know the `-completed cohomology of a point.
This gives a path to obtaining information about motivic spectra aris-
ing from constructions of rational algebraic geometry, which includes
algebraic K-theory as well as MGL.

When Morel and Voevodsky �rst developed their theory, the fo-
cus was on obtaining information about the underlying �eld, whose
`-completed motivic cohomology is trivial in the algebraically closed
case. The idea of studying motivic homotopy theory over C was �rst
considered in [27, 26]. The full signi�cance of this was only recently
understood and developed into an important new tool of stable homo-
topy theory by Gheorghe, Isaksen, Wang, and Xu [29, 14, 15, 30],
with a boom of further developments by multiple authors, see e.g.
[2, 10, 16, 49, 11, 6].

Back to our proof, in [26], Section 4, it was calculated that

(57) MGL? = MU∗[τ ]

where the generators xi, τ have dimensions i(1 + α), (1 − α) in the
notation of [26], where the element τ was denoted θ. For general back-
ground on algebraic cobordism, we refer the reader to Levine and Morel
[37]. The �1, α� notation is motivated by analogs with Z/2-equivariant
homotopy theory via the Real realization - the analogy was noticed in
the 1990's by Hu and Kriz, who used it in several subsequent papers. In
recognition of the connections with algebraic geometry, it has become
more common to denote the dimensions by 1 = (1, 0), α = (1, 1).

Now the constructions of the present paper may be repeated verba-
tim in the 2-completed motivic category over C, we obtain a variant of
the spectral sequence (2) of the form

(58) ExtA(Z,MU∗)[τ ]⇒MSCMot
∗ .

Now we can use the result of Gheorghe [14] (see also [15, 30]) which
asserts that when we change rings from SMot to SMot/τ , the resulting
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spectral sequence

(59) ExtA(Z,MU∗)⇒ (MSCMot/τ)∗

collapses.
In fact, any higher di�erentials in (58) give rise to τ -torsion in

MSCMot
∗ . Now let us return to the setup of the beginning of this

section, this time putting

(60) R = MSCMot, M = MGL

(still working in the 2-completed motivic category over C). As above,
we conclude again that M = MGL is an invertible object in the de-
rived category of R-modules. By (57), its homotopy groups have no
τ -torsion. Suppose now 0 6= b ∈ π∗R were τ -torsion. Therefore, the
element b would have to act by 0 onM . However, sinceM is invertible,
it would therefore also act by 0 on R, which is a contradiction.

The lack of Z-multiplicative extensions is proved similarly: Suppose

(61) 2mx = yτ

for x, y ∈ R∗. Then the relation (61) will also be true in the corre-
sponding operations on the invertible module M∗. However, in our
case, M∗ = MU∗[τ ], whose operations are MU∗MU [τ ] and thus, (61)
does not occur.

Comment: We do not know if the spectral sequence

(62) ExtLS(L,L)⇒MO[2]∗

collapses to the E2-term. However, recall that the primitive generators
s2k+1 of degrees (t−s, s) = (4k+1, 1) are permanent cycles (represented
by RP 4k+1). Now these manifolds all have non-zero Stiefel-Whitney
numbers of the half-normal number. Equivalently, they produce a non-
trivial image by the Hurewicz homomorphism into HZ/2∗(MO[2]).
Hence, all powers of these generators are non-zero (in contrast, for
example, with Nishida's nilpotence theorem in the stable homotopy
groups of spheres). See Figure 3.

6. Appendix: The classical methods

The subject ofMSC was extensively studied, see for example [8, 12,
18, 36, 43, 44, 54]. We recall here some known partial results some of
which are implicit in our discussion, and which are not easily quotable
in the literature, at least in the present context.
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s\ t− s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Z 0 Z 0 Z2 0 Z3

1 (4) 0 (2, 16) 0 (8, 64) 0

2 (2) 0 (2, 4) (2) (2, 42) (4)

3 (2) 0 (22) (2) (25)

4 (2) 0 (22) (2) (25)

5 (2) 0 (22) (2)

6 (2) 0 (22) (2)

7 (2) 0 (22)

8 (2) 0 (22)

9 (2) 0

10 (2) 0

11 (2)

12 (2)

2

Figure 3. The recti�ed Adams-Novikov spectral
sequence for MO[2]

Let us denote by L the subring of all elements x ∈MU∗ such that

c2i+1cj1 . . . cj` [x] = 0

for all i, j1 . . . , j` ∈ N.

7. Theorem. The ring L coincides with the image of the canonical
map ι : MSC∗ →MU∗.

To prove this, note that Im(ι) ⊆ L was proved by Buchstaber [8],
Lemma 24.17. We also have

6.1. Proposition. (Buchstaber [8], Theorem 24.20) If we denote by
κ : MU∗ →MO∗ the canonical map, then

(63) Im(κι) = κ(L).

�

6.2. Proposition. Let

βn = b2
n − 2bn−1bn+1 + · · ·+ 2(−1)nb2n ∈MU∗ ⊗Q

where
b(x) = x+

∑
n≥1

bnx
n+1

is the exponential series of the universal formal group law. Then

(64) L ⊗Q = Q[β1, β2, . . . ].

Proof. The series

β(x) = −x2 +
∑
n≥1

βn(−x2)n+1
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satis�es

β(x) = b(x)b(−x) = b(x)ib(x)

where i(x) is the formal inverse. Thus, considering

b : CP∞ → Σ2MUQ, β : CP∞ → Σ4MUQ,

we can write

β = bb

where b denotes complex conjugation. In other words, β can be ex-
pressed as the composition

CP∞
φ // BU(2)

c2 // Σ4MUQ

where c2 is the Conner-Floyd Chern class and φ is B applied to the
embedding

S1 → U(2)

by

z 7→
(
z 0
0 z

)
.

Thus, the map κ factors as

CP∞ → BO(2)→ BU(2)

where the second map is complexi�cation. Therefore, βn ∈ L ⊗ Q by
the fact that rationally, odd Chern classes vanish on a complexi�ed
real bundle. On the other hand, it follows from considering rational
homology that Im(ι) ⊗ Q is a polynomial algebra on generators in
dimensions divisible by 4 (for example by Conner-Floyd [12]), and thus
our statement follows from a counting argument. �

Recall the Milnor class sn = pn(c1, c2, . . . , cn) in Chern classes where

pn(σ1, σ2, . . . ) = tn1 + tn2 + . . .

where σi are the elementary symmetric polynomials in the ti. Recall
that the Milnor number sn[x] detects the image of an element x ∈MU2n

in the module of indecomposables QMU2n.

6.3. Proposition. There exists an element Vk ∈ Im(ι)2(2k−1) whose
Milnor number is 8. These elements are equal to v2

k (where we denote
vk = x2k−1) modulo other monomials in the xi. Addionally, Vk can be
chosen so that κ(Vk) = 0.
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Proof. For the �rst statement, it su�ces to construct an element in
the given dimension with Milnor number of 2-valuation 3 (since at odd
primes,MSC is just a wedge of copies of BP , see [12]). Now for k ≥ 3,
one notes that

v2

(
2k+1 + 2k − 4

2k+1 − 7

)
= 3.

It follows that in this case, we can take a Stong manifold given as the
Z/2-quotient of an intersection of 2k−2 hypersurfaces of bidegree (1, 1)
in

CP 2k+1−7 × CP 2k+3

by the diagonal Z/2-involution on both CP 2i+1-factors:

(z0, z1, . . . , z2i, z2i+1) 7→ (−z1, z0, . . . ,−z2i+1, z2i).

For k = 1, 2, one must use other generators (e.g. [43] observes that the
statement of Theorem 7 is true in dimensions ≤ 128).
Now by Proposition 6.2, Vk is congruent to 4β2k−1 modulo the square

of the augmentation ideal in Im(ι) ⊗ Q. We see that no multiples of
the monomials of βiβj contain v2

k, which is a monomial summand of
4β2k−1. The second statement follows. Finally, for the last statement,
by [44, 8], Im(κι) is the 4th power of the Floyd ring. In particular, it
is a polynomial ring with generators in dimensions 8(2i+ 1), 8 · 2`, 8 · i
where i is not a power of 2. Therefore, lifting the generators to Im(ι),
none of them can contain a rational multiple of β2k−1 as a summand
(for reasons of dimension). Therefore, adding a polynomial in these
generators cannot cancel the term v2

k. �

Proof of Theorem 7. It remains to prove that

(65) L ⊆ Im(ι).

Since (as we already noted) the problem is trivial at odd primes, we
may work completed at 2. Thus, suppose y ∈ L∧2 . By Proposition 6.2,
we may write

y = p(V1, V2, . . . )

where p is a polynomial with coe�cients in

Q2[xi | i 6= 2k − 1].

However, the coe�cient a` where ` = (`1, `2, . . . ) of V
`1

1 V `2
2 . . . must in

fact satisfy

a` ∈ Z2[xi | i 6= 2k − 1],

since otherwise the element y would not belong to (MU∗)
∧
2 (consider

the coe�cient of v2`1
1 v2`2

2 . . . ). Additionally, we must also have a` ∈
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Q2[β1, β2, . . . ] (since the element of highest degree which fails this con-
dition would contradict Proposition 6.2).
Now by Proposition 6.1, there exist b` ∈ Im(ι) so that

b` − a` ∈ (2, v1, v2, . . . ).

Now since we also have b`−a` ∈ L, it will have a lower degree (and hence
be subject to induction) except when ` = 0. However, the constant
term of b0−a0 is now divisible by 2. Thus, we may divide the constant
term by 2 and apply the same procedure to it, and apply induction to
its other coe�cients. Since we are working completed at 2, the in�nite
sum in increasing powers of 2 we produce by repeating this process will
converge to an element of Im(ι)∧2 which is equal to y.

�

Suppose now we �lter LSC by 1/2 times the topological degree of
the L-degree of the augmentation LSC → L. This is a decreasing
�ltration, and one has an algebraic Novikov spectral sequence

(66) E2 = Cotor(L,E0LSC)(L,L)⇒ Cotor(L,LSC)(L,L).

Moreover, it follows from the discussion of the previous section that
the left hand side of (66) is of the form

(67) Cotor(L,E0LSC)(L,L) = ΛL(a1, a3, a5, . . . )

where the generator a2k+1 is in degree 2k + 1. Moreover, it follows
from considering the Adams spectral sequence that the generators a4k+1

are realized by the manifolds RP 4k+1 whose stable tangent bundle is
(4k + 2)γ1

R, which is double a real bundle, and thus canonically has a
structure of a self-conjugate complex bundle.
On the other hand, the representatives N4k−1 of a4k−1 were con-

structed by Landweber [36, 54]. They are given by

S4k−1 ×Sp(1) S
3

where Sp(1) acts on S4k−1 (thought of as the unit sphere in Hk) by
right multiplication of quaternions, and on S3 = Sp(1) by conjugation.
(Here we are considering only the compact form of Sp(k).)
One then remarks that the sum of the tangent bundle of N4k−1 and

a 1-dimensional trivial real bundle is isomorphic to kγ1
H, and thus has

a canonical structure of a self-conjugate complex bundle.

6.4. Proposition. The Toda brackets

(68) 〈a2k+1, a2k+1, . . . , a2k+1〉
all contain 0 ∈MSC∗.
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Proof. We begin by showing that

(69) a2
2k+1 = 0.

When k is even, consider the manifold with boundary

M = RP 4k+1 × RP 4k+1 × [0, 1]

with Z/2-action by

(70) (x, y, t) 7→ (y, x, 1− t).
The �xed point submanifold is

∆× {1/2}
where ∆ ⊂ RP 4k+1×RP 4k+1 is the diagonal. Thus, the normal bundle

νM∆ = (4k + 2)γ1
R,

with Z/2-action by

(71) x 7→ −x.
This is canonically a complex bundle, so we can perform a complex
blow-up of ∆ in N and form a non-singular manifold Z by taking
the Z/2-quotient (since the submanifold of Z/2-�xed points now has
complex codimension 1). Moreover, the construction just performed
is complex and self-conjugate, thus proving that the manifold Z with
boundary has an MSC-structure, thus providing the cobordism which
proves (69).
In the case of k odd, we put, analogously,

M = N4k−1 ×N4k−1 × [0, 1],

again with Z/2-action by (70). This time, the �xed point manifold is

E × {1/2}
where E ⊂ N4k−1×N4k−1 is the diagonal. Thus, the normal bundle is

νME = kγ1
H.

Once again, this is naturally a complex bundle, so we can perform a
complex blow-up of E, and then take a Z/2-quotient, thus again getting
a manifold with boundary Z. Since, again, the construction performed
is complex and self-conjugate, Z is an MSC-cobordism, again proving
(69).
Now assume anMSC-cobordism Zn is constructed proving (67) with

n factors. If k is even, we form a manifold Mn by gluing Zn × RP 4k+1

and RP 4k+1 along

RP 4k+1 ×Mn−1 × RP 4k+1
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and multiplying by [0, 1]. The manifold Mn has a natural action by
reversing the order of the copies of RP 4k+1 (and extending by the cor-
responding maps on the cobordism coordinates), and mapping

t 7→ 1− t
on the new interval coordinate. The action is free on the previous
cobordism coordinates, so the �xed point manifold Dn is {1/2} times
the �xed point of the Z/2-action on

(RP 4k+1)n

by reversing the order of factors. This is a diagonal manifold isomorphic
to (RP 4k+1)dn/2e, and its normal bundle is a sum of bn/2c copies of the
(4k + 2)γ1

R on the individual coordinates, and a trivial bundle, with
Z/2-action by (71). (Because of the previous cobordism coordinates,
there are always enough trivial coordinates to stabilize.) Thus, the
normal bundle of Dn in Mn is a self-conjugate complex bundle, and
we can again perform a complex blow-up of Dn in Mn, and then take
a Z/2-quotient. The construction is complex and self-conjugate, and
thus, we obtain the required cobordism proving (67) with n+1 factors.
The case of k odd is completely analogous, with RP 4k+1 replaced by

N4k−1. �
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