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Abstract. We give a complete algebraic computation of self-
conjugate cobordism groupsMSC∗, which has been an open prob-
lem since the 1960's. Our approach is based on several new ideas,
including structured homotopy theory, new apsects of formal group
laws and variants of the Adams-Novikov spectral sequence, and the
motivic loop of Gheorghe, Isaksen, Wang and Xu. We also obtain
new results on cobordism with antilinear involution.

1. Introduction

The problem of computing the ring of complex cobordism groups
MU∗, i.e. the complex version of Thom's problem [36], was solved
in 1960 by Milnor [26] and Novikov [29, 31]. The complex cobordism
spectrum MU , along with Atiyah's K-theory [2], were two generalized
cohomology theories which played a key role in the development of
modern algebraic topology.
Studying the e�ect of complex conjugation on these theories was a

next logical step. This can be done in at least two di�erent ways:
It is possible to consider self-conjugate structures, which are complex
structures (e.g. manifolds or bundles) equipped with an antilinear au-
tomorphism. On the other hand, one can make an antilinaer involution
a part of the structure and study it Z/2-equivariantly. This is often
referred to as a Real structure.
In the case of K-theory, the two approaches are related in a relatively

simple way. Both Real and self-conjugate K-theory KR and KSC were
introduced by Atiyah in his elegant proof of real Bott periodicity [3].
Self-conjugate K-theory KSC turns out to be a part of the equivariant
Real K-theory KR, (or, speaking non-equivariantly, a shift of orthogo-
nal K-theory KO), thus explaining it completely.
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In cobordism, the situation is rather di�erent. The Z/2-equivariant
Real cobordism spectrum MR was de�ned by Landweber [21], and fur-
ther investigated by Araki [1]. The coe�cient ringMR? was eventually
calculated by Hu and Kriz [14], and later used, along with its variants,
by Hill, Hopkins and Ravenel [12] in their solution of the Kervaire-
Milnor problem. It is worth noting that due to the behavior of equi-
variant transversality, the equivariant Thom spectrum MR does not
actually calculate the corresponding cobordism groups of manifolds,
which were characterized by Hu [13] as homotopy groups of suspension
spectra, making them essentially uncomputable by current methods.

The spectrum MSC of self-conjugate cobordism, on the other hand,
was studied by Smith and Stong [35]. It is de�ned as the Thom spec-
trum of the pullback of the tautological element of K0BGL to BSC,
which is de�ned as the homotopy equalizer

(1) BSC // BGL
A 7→(AT )[−1

//

Id
// BGL

(BGL is homotopically equivalent to BU , but we write BGL to em-
phasize the fact that the construction makes sense algebraically, which
will be relevant below.)
Despite the analogy with KSC, the spectrum MSC is not a part

of the Z/2-equivariant Real cobordism spectrum MR. In fact, MSC
turns out to be much more complicated than MR. For example, the
group MSC1 is Z/4 [10]. To give another example, the image of the
map MSC4 → MU4 is generated by an Enriques surface (by com-
putation of Chern numbers). The homotopy groups of the spectrum
MSC, which are the geometrically de�ned cobordism groups of man-
ifolds with self-conjugate complex structures on their normal bundles,
resisted calculation until the present time.1

The goal of this paper is to introduce a completely algebraic machine
(using the homological algebra of formal groups) which gives a complete
calculation of MSC∗, even though the answer is too complicated to be
written out in closed form.

Concretely, using formal group law theory, we construct an explicit
action of a certain polynomial algebra A = Z[α1, α2, α3, . . . ] on MU∗
where αi has topological degree −2i (graded homologically), and a
spectral sequence

(2) Es,t
2 = Exts,tA (Z,MU∗)⇒MSC∗.

1These groups have no p-torsion for p 6= 2, and their localization at p 6= 2 was
calculated by Smith and Stong [35].
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Our main result is

1. Theorem. The spectral sequence (2) collapses and there are no Z-
multiplicative extensions. In other words, the self-conjugate cobordism
groups are given by

(3) MSCn =
⊕
t−s=n

Exts,tA (Z,MU∗).

Our proof of Theorem 1 is based on several new techniques which
were not available at the time when MSC was �rst considered.

1.1. Spectral commutative rings. In the construction of our spec-
tral sequence, we use strictly commutative spectral rings (i.e. E∞-ring
spectra [25, 7]) In that category, we have a morphism

MSC →MU,

and our spectral sequence is obtained by resolving MU over

MU ∧MSC MU.

The resulting Hopf algebroid (i.e. coordinate ring of an a�ne groupoid
scheme) has a surprisingly simple description, and (at least 2-locally,
which is the only non-trivial prime in this case), has the form outlined
above.

In fact, to make these conclusions, we also study the spectrumMO[2],
which represents the cobordism of manifolds M with a real bundle ν
and an isomorphism

τM ⊕ ν ⊕ ν ∼= N

where N is a trivial bundle. Then MO[2] can be described as the
spectrum associated with the prespectrum (D2n) where

(4) D2n = BO(n)2γnR

and the connecting map Σ2D2n → D2n+2 given by the obvious iso-
morphism of the pullback of 2γn+1

R to BO(n) with 2γnR ⊕ 2. We refer
to MO[2] as the double real cobordism spectrum. This spectrum was
studied before, although not extensively (see for example Kitchloo and
Wilson [19]).
To connect with MSC, note that one can think of BO(n) as the

classifying space of complex n-bundles with an antilinear involution,
so (4) can also be characterized as BO(n)γ

n
C where γnC is the universal

complex n-bundle. On the other hand, BSC(n) is the classifying space
of complex n-bundle with an antilinear automorphism which is not
necessarily an involution. Thus, MSC is de�ned in the same way, with
(4) replaced by BSC(n)γ

n
C .
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Complexi�cation BO(n) → BU(n) therefore induces a canonical
morphisms of E∞-ring spectra

(5) MO[2]→MSC →MU.

We �rst calculate the simpler Hopf algebroid (MU∗,MU ∧MO[2] MU∗),
which is a precursor for the spectral sequence (2).

1.2. Recti�ed Novikov spectral sequences. The spectral sequences
for calculating MSC∗ and MO[2]∗ are similar to the Adams-Novikov
spectral sequence in the sense that they use a resolution by free MU -
modules, but the cobar complex is not the same as the Adams-Novikov
cobar complex. This behavior arises due to the fact that MU∗MSC,
MU∗MO[2] are not �at MU∗-modules.
We call our spectral sequence recti�ed Adams-Novikov spectral se-

quences because their E2-terms are described as Ext-groups of partic-
ularly nice new Hopf algebroids

(6) (MU∗, (MU ∧MO[2] MU)∗) = (L,LS)

and

(7) (MU∗, (MU ∧MSC MU)∗) = (L,LSC).

Finding a purely algebraic description of those Hopf algebroids is a key
part of our method. The description is based on carefully studying
the formal group law structures involved. While the idea of using
additional structure on formal group laws in the investigation of MSC
is not new (notably, Buchstaber and Novikov [4, 5] used their concept
of 2-valued formal group laws in this context), the precise description
of the structures represented by our novel Hopf algebroids are in fact
quite subtle (see Comment at the end of Section 2). Calculating (6)
leads to a calculation of (7) using the Witt construction and structure
results on bipolynomial Hopf algebras [34].
In the case of MSC, the particularly simple E2-term then allows an

argument proving collapse. The situation is similar to the paper by
Gugenheim and May [11], although the present situation is homotopi-
cal, not homological, and therefore methods of spectral algebra, which
are quite di�erent from the methods of di�erential graded algebra used
in [11], are required.
While the calculation of the Hopf algebroid (6) is a crucial step in

calculating the Hopf algebroid (7), the E2-term of the resulting spectral
sequence forMO[2] is more complicated than forMSC, and we do not
have a collapse theorem in that case. It is worth noting that we do
not really know any di�erentials in the case of MO[2], and certain
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surprising elements survive (see Comment at the end of Section 4).
Therefore, the possibility of collapse of the recti�ed Novikov spectral
sequence for MO[2] remains an interesting question.

1.3. The motivic loop and Novikov formality. The last ingredi-
ent in the proof of Theorem 1 is the very recent motivic loop technique
of Gheorghe, Isaksen, Wang and Xu [8, 18]. A striking complete al-
gebraic calculation of the stable homotopy groups of a space was ac-
complished by Gheorghe [8], who described the homotopy groups of
the C-based motivic spectrum SMot/τ as the E2-term of the classical
Adams-Novikov spectral sequence. Theorem 1 identi�es MSC as an-
other example of a spectrum form which some version of a Novikov
resolution gives a complete calculation of homotopy groups. We sug-
gest a term Novikov-formal spectra for such examples, even though we
do not give a precise de�nition.
While Gheorghe's theory concerns motivic spectra, it has revolution-

ized the computations of classical stable homotopy groups. Isaksen,
Wang and Xu [18] used Gheorghe's result to greatly expand the known
calculations of stable homotopy groups of spheres. The case ofMSC is
somewhat di�erent: it is simpler in the sense that the algebraic objects
involved are simpler: we are talking only about the cohomology of a
polynomial algebra. On the other hand, it is more complicated in the
sense that the answer is bigger.
Roughly speaking, when a spectrum has a motivic version de�ned

over C, then we can also consider its reduction to the Gheorghe motivic
spectrum SMot/τ , where, by his theorem, the Novikov-type spectral
sequence collapses (the special �ber). On the other hand, when we
invert τ , we get the situation of classical homotopy theory (the generic
�ber). In the motivic setting over C (the mixed characteristic), the
higher di�erentials of the Novikov-type spectral sequence (whose E2-
term, in our case, is a polynomial algebra with generator τ over the
corresponding E2-term over SMot/τ), correspond exactly to τ -torsion
of the motivic spectrum in question. This happens both over the sphere
and in our recti�ed Adams-Novikov spectral sequence for MSC.
Our particular use of the method of Gheorghe [8] is quite di�er-

ent from the way it was applied by Isaksen, Wang and Xu [18]. In
our present setting, we study the motivic recti�ed Novikov spectral se-
quence directly, investigating the behavior of τ -torsion in the context
of spectral algebra. In [18], on the other hand, the main point is to
use the additional fact of coincidence of the Adams spectral sequence
for SMot/τ with the algebraic Novikov spectral sequence, which is then
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used to deduce facts about the classical Adams spectral sequence dif-
ferentials.
As far as explicit calculations of (3), due to the complicated nature

of formal group laws, a closed form answer is not known. However, for
the purpose of practical calculations, there is a suitable �ltration on the
cobar complex which leads to an algebraic spectral sequence, in whose
E1-term the algebra A considered above acts trivially. This spectral
sequence therefore has a parabolic vanishing curve with asymptotic
slope 0. Concrete computations using symbolic algebra were carried
out by Riley. We will discuss this approach in Section 3 below.

The present paper is organized as follows: In Section 2, we describe
the Hopf algebroid in the case of MO[2]. In Section 3, we discuss the
case of the Hopf algebroid for MSC. In Section 4, we prove Theorem
1. Finally, in the Appendix, we recall some classical results which
have been obtained by previous authors, and which are implicit in our
discussion.

2. The rectified Adams-Novikov spectral sequence for

MO[2]

Virtually all the spectral sequences used to calculate stable homo-
topy groups (such as the Adams spectral sequence, the Adams-Novikov
spectral sequence, see [33] for a quick review) are spectral sequence of
descent type, using the standard construction of Godement [9]. In the
present paper, we work in the category of R-modules where R is an E∞-
ring spectrum over which the complex cobordism spectrum MU is an
E∞-algebra (for foundations, see [25, 7]), where concretely R = MO[2]
and R = MSC, and the monad (i.e. standard construction) on R-
modules is

M 7→M ∧RMU.

The corresponding descent spectral sequences, converging to MO[2]∗,
MSC∗, have E2-term which can be expressed as

ExtΓ(A,A) = CotorΓ(A,A)

where the Hopf algebroid (A,Γ) is the Hopf algebroid (6) in the case of
MO[2] and (7) in the case of MSC provided that the Hopf algebroid
is su�ciently nice (in the sense that Γ is �at over A). We refer to these
spectral sequences as the Recti�ed Adams-Novikov spectral sequence for
MO[2] resp. MSC.
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Additionally, the spectral sequences automatically converge to their
target assuming that the connectivity of the iterated �bers increases.
Both conditions turn out to be true in our case. However, this requires
a calculation of the Hopf algebroids (6), (7). In the present section, we
give a complete algebraic computation of (6), which is simpler.

It is well known that MU∗ = L is the Lazard ring which supports
the universal formal group law. Additionally, the Landweber-Novikov
Hopf algebroid (MU∗,MU∗MU) = (L,LB) [22, 30] has

LB = L[b1, b2, . . . ]

where bi are thought of as the coe�cients of a series

b(x) = x+
∑
i>0

bix
i+1

where f : F → G represents strict isomorphisms from a given formal
group law to another formal group law ([33], Appendix A2).
We shall now describe a Hopf algebroid (L,LS) as follows: Suppose

we write

(8) b(x) = x+ s(x)[2]x

where

s(x) =
∑
i>0

six
i,

and that we simultaneously impose the relation

(9) xi(x) = b(x)b(i(x))

where i(x) = [−1]x is the inverse series. Plugging in (8) into (9), we
get

(10) s(x)i(x)[2]x+ xs(i(x)[−2]x+ s(x)s(i(x))[2]x[−2]x = 0.

Now clearly [−2]x = i([2]x) is divisible by [2]x, so (10) can be further
rewritten as

(11) s(x)i(x) + xs(i(x))
[−2]x

[2]x
+ s(x)s(i(x))[−2]x = 0.

However, we claim that (10) is once more divisible by [2]x. To this end,
note that

[−2]x

[2]x
≡ −1 mod [2]x,

so modulo [2]x, (11) has the form

s(x)i(x)− xs(i(x)) = s(x)(i(x)− x) + x(s(x)− s(i(x)),
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which is divisible by x− i(x), which in turn is a unit multiple of

x−F i(x) = [2]x.

Thus, denote by

g(x) =
∑
n≥1

gnx
n.

the ratio of the left hand side of (11) by [2]x. Then we have

(12) g2n = ±s2n mod I

where I is the augmentation ideal of L[s1, s2, . . . ]. We will see later us-
ing topology that the relations g2n+1 actually follow from the relations
g2n. Thus, we can de�ne the Hopf algebroid (L,LS) by

(13) LS = L[s2n+1 | n ≥ 0] = L[sn | n ≥ 1]/(g2n | n ≥ 1).

2. Theorem. (1) We have LS ∼= MU ∧MO[2] MU∗.
(2) The recti�ed Adams-Novikov spectral sequence for MO[2] has the

form

(14) Cotor(L,LS)(L,L)⇒ π∗MO[2].

Proof. We begin by computing MU ∧MO[2] MU∗. This is a connective
spectrum of �nite type, so we can compute one prime at a time. At
p > 2, we have

H∗MO[2] ∼= H∗BO ∼= Z/p[p1, p2, . . . ]

so H∗(MO[2],Z/p) is a direct sum of even suspensions of P ∗ = A∗/(β)
by the Milnor-Moore theorem, and hence MO[2] is a wedge of even
suspensions of copies of BP , which map by (5) equivalently to wedge
summands of MU . We conclude that MU ∧MO[2]MU∗ = LS locally at
an odd prime.
To compute at p = 2, we �rst use the Eilenberg-Mac Lane spectral

sequence

(15) TorH∗MO[2](H∗MU,H∗MU)⇒ H∗MU ∧MO[2] MU.

We have

(16) H∗(MO[2],Z/2) ∼= H∗(BO,Z/2) = Z/2[a1, a2, . . . ]

where |ai| = i, while we can write

H∗(MU,Z/2) = H∗(BU,Z/2) = Z/2[a2, a4, . . . ].

Thus, the E2-term of the spectral sequence (15) is

(17) ΛZ/2[b1, b3, . . . ]
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where b2i+1 has topological dimension 2i+ 1 and Tor-dimension 1 and
thus, total dimension 2i + 2. Additionally, since homological suspen-
sion preserves Dyer-Lashof operations, by considering the Dyer-Lashof
operations in H∗BO ([32]), in homology, (17) becomes

(18) Z/2[b4i+1 | i ≥ 0]

where |b4i+1| = 4i + 2. Thus, by Milnor-Moore's theorem, again,
H∗(MU ∧MO[2] MU,Z/2) is a direct sum of even suspensions of P∗,
and hence also at 2, MUMO[2]MU is a wedge of even suspensions of
copies of BP with the correct number of terms in each degree.
In fact, this is also true multiplicatively, so we know that

MU ∧MO[2] MU∗ = MU∗[s1, s3, . . . ]

where |s2i+1| = 4i+ 2.
Additionaly, considering the canonical map

(19) MU∗MU →MU ∧MO[2] MU∗,

we get from the Bockstein spectral sequence that

(20) 2si = bi mod decomposables.

We also now know that (19) is onto rationally and that the target has
no torsion.
To identify the elements si precisely, we �rst recall that considering

the standard complex orientation x ∈ MU∗CP∞, and identifying it
with the element of (MU ∧MU)∗CP∞ by composing with the left unit
ηL : MU →MU ∧MU , then composing with the right unit,we obtain
the element b(x) ∈ (MU ∧ MU)∗CP∞. Similarly, if we use RP∞
instead of CP∞, we get the same result modulo [2]x. However, the
two maps RP∞ → MU ∧MO[2] MU using the left and right unit must
coincide, since the orientation RP∞ → MU factors through MO[2].
Thus, we deduce that in MU ∧MO[2] MU∗, b(x) must be congruent to
x modulo [2]x, and thus, the elements si de�ned by (8) must exist in
MU ∧MO[2]MU∗. We further see from (20) that s2i+1 coincide with the
expected generators (since the leading term of [2]x is 2x).
To identify the precise relations between these elements, consider the

second Chern class
c2 : BU(2)→ Σ4MU.

Composing with the canonical inclusions

CP∞ → BO(2)→ BU(2),

the second Chern class becomes

xi(x)
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where x is the complex orientation. If we compose with the left resp.
right unit to MU ∧MU , we get xi(x), b(x)b(i(x)), respectively. How-
ever, since the composition factors throughMO[2], inMU∧MO[2]MU∗,
(9) must hold. This proves the relations we established. (We can di-
vide [2]x twice since there is no torsion.) Further, it proves that the
odd-degree part of (9) can generate no further relation, since we know
from the above calculation that the elements s2i+1 are algebraically
independent.

�

Comment: The question of a moduli interpretation of the Hopf
algebroid (L,LS) is a natural one. We completed the calculation by
embedding into the rationalization of the Hopf algebroid (L,LB) rep-
resenting the groupoid of formal group laws and strict isomorphisms.
We imposed congruence of the strict isomorphism to the identity mod-
ulo the 2-series [2]Fx, which caused us to allow some division of the
coe�cients of the reparametrization series, and then we imposed the
condition that the strict isomorphism preserve the series xi(x) (the
parameter of the Buchstaber-Novikov 2-valued formal group [4, 5]),
which caused the even-degree coe�cients to become polynomial func-
tions of the odd-degree ones. Thus, we can say that LS represents strict
isomorphisms which are identity on the 2-torsion of the formal group,
and preserve the coordinate of the 2-valued formal group. However, this
should be considered more of a metaphor than a precise statement.

3. The rectified Hopf algebroid for MSC

In Section 2, we calculated the Hopf algebroid (6). In this section,
we shall calculate the Hopf algebroid (7). Again, locally at an odd
prime, there is nothing to prove, as MSC is just a wedge of copies of
BP (see [20, 35]).
At the prime 2, we again �rst calculate H∗(MU ∧MSC MU,F2). To

this end, we recall from [20] that we have

(21)
H∗(MSC,F2) = H∗(MU,F2)⊗ Λ(a1, a3, . . . ) =
F2[a2, a4, . . . ]⊗ Λ(a1, a3, . . . )

where, comparing with (16), the map H∗(MO[2],F2)→M∗(MSC,F2)
is realized by reduction modulo a2

2i+1. Thus, again, we have a spectral
sequence

(22) H∗(MU,F2)⊗ TorΛ(a1,a3,... )(F2,F2)⇒ H∗(MU ∧MSC MU,F2).
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Using the homology of an exterior algebra in characteristic 2, the left
hand side of (22) is

(23) H∗(MU,F2)⊗ Λ(b1,i, b3,i, . . . , i = 0, 1, . . . )

where b2j+1,i is the ith transpotence of b2j+1, and thus has topological
dimension (2j+1)·2i and Tor-dimension si. Therefore, all elements are
in even total dimension, and thus, the spectral sequence (22) collapses
fo E2. As in Section 2, using Dyer-Lashof operations, we see that the
square of b2j+1,i is represented by b4j+3,i, and thus, it is possible to write

(24) H∗(MU ∧MSC MU,F2) = H∗(MU,F2)⊗ F2[b4j+1,i | i, j ∈ N0].

From (24) and the Milnor-Moore theorem, we can write
(25)
H∗(MU ∧MSC MU,F2) = P∗ ⊗ F2[xi | i 6= 2k]⊗ F2[b4j+1,i | i, j ∈ N0]

and hence the Adams spectral sequence also collapses to E2 and we
can write

(26) π∗(MU ∧MSC MU)∧2 = MU∗[b4j+1,i]
∧
2 .

Noticing that the total dimensional degree of b4j+1,i is (2j + 1) · 2i+1,
which runs through all even degrees, comparing to the odd prime com-
putation, and using �nite type, we can then simply change notation to
write

(27) LSC = MU ∧MSC MU∗ = MU∗[b
′
1, b
′
2, . . . ]

where the dimensional degree of b′i is 2i.
In fact, we can further identify these elements by composing with

the Hurewicz homomorphism into

(28) H∗(MU ∧MSC MU,Z) = H∗(BU ×BSC BU,Z)

(which follows from the Thom isomorphism). We can identify BU×BSC
BU with

(29) BU ×BU/BSC ∼ BU ×BU
where on the left hand side of (29), the second copy of BU is identi�ed
with the antidiagonal in BU ×BU . The right hand side of (29) follows
from the �bration sequence

(30) BSC // BU
1−? // BU.

Thus, the Thom isomorphism identi�es

(31) H∗(MU ∧MSC MU,Z) = H∗(MU ∧BU,Z)

where H∗BU = Z[b′1, b
′
2, . . . ] are the usual generators.
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We can consider a diagram

(32)

LB = MU∗[B1, B2, . . . ]

tthhhhh
hhhh

hhhh
hhhh

h

��

LS = MU∗[s1, s3, . . . ]

**VVVV
VVVV

VVVV
VVVV

VV

LSC = MU∗[b1, b2, . . . ].

(We used capital letters in the top term to avoid a confusion between
LB and LSC, which are isomorphic graded algebras.) It is convenient
to write

B(x) = x+B1x
2 +B2x

3 + . . . , b(x) = x+ b1x
2 + b2x

3 + . . . ,

B(x) = B(x)/x, b(x) = b(x)/x.

Then the vertical map (32) is given by

(33) B(x) 7→ b(x)/b(i(x))

where i(x) is the universal formal inverse. We see that our relation (9)
translates to

B(x)B(i(x)) = 1,

which holds. Writing

B(x) = x+ s(x)[2]x, s(x) = s(x)/x,

we get

B(x) = s(x)[2]x+ 1.

To compute the composition law on (L,LSC), recall that the compo-
sition law on (L,LB) is given by

(34) ∆(B(x)) = B1 ◦B2(x)

where B1 = B⊗1, B2 = 1⊗B. Thus, we are looking for a composition
law on (L,LSC) which would be compatible with the map (33). To
this end, we note that (33) gives

(35) B(x) 7→ b(x)i(x)

b(i(x))
.

When calculating composition, we must keep in mind that the inverse
transforms by the right unit in composition. Putting, for a series g(x) =
x+ . . . ,

(36) ig(x) = g(i(g−1(x))),
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using (35), and denoting

∆(b)(x) = φ(x),

we get by (34)

(37)
b1(g(x))ig(g(x))

b1(ig(g(x)))
=

φ(x)

φ(i(x))
· i(x)

where

g(x) =
b2(x)i(x)

b2(i(x))
.

Using (36), we get

b1(
b2(x)i(x)

b2(i(x))
) · b2(i(x))x

b2(x)

b1(
b2(i(x))x

b2(x)
)

=
φ(x)

φ(i(x))
· i(x).

This leads to the natural guess

(38) φ(x) = ∆(b(x)) = b1(
b2(x)i(x)

b2(i(x))
) · b2(i(x))

i(x)

where

b1 = b⊗ 1, b2 = 1⊗ b.
The unit axiom follows immediately by replacing b1(x) resp. b2(x) with
x.
To verify associativity, putting

b1 = b⊗ 1⊗ 1, b2 = 1⊗ b⊗ 1, b3 = 1⊗ 1⊗ b,

z =
b3(x)i(x)

b3(i(x))
, z =

b3(i(x))x

b3(x)
,

we get

(1⊗∆)∆b(x) = b1(
b2(z) · b3(i(x))x

b2(z)b3(x)
) · b2(z) · b3(x)

xi(x)

while

(∆⊗ 1)∆b(x) = b1(
b2(z) · z
b2(z)

) · b2(z)

z
· b3(i(x))

i(x)
.

It is immediate that both expressions are equal.

3. Theorem. The Hopf algebroid structure on (L,LSC) is determined
as follows: The left unit is the inclusion, the right unit is the right unit
in (L,LB) composed with (35). The augmentation sends b(x) 7→ 1,
and the coproduct is given by (38).
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Proof. As a warm-up, we begin by reformulating the structure formulas
of (L,LB). As seen in [33], Theorem A2.1.16, it su�ces to give the
structure formulas in the Hopf algebroid

(39) (HL,HLB) = (HZ∗MU,HZ∗MU ∧MU).

Using our above convention of using a bar to indicate division by x, we
get

(40) b1 ◦ b2(x) = b1(b2(x)) · b2(x).

Now if we write

b2 : F → G,

then

b2(expF (x)) = expG(x),

while

expG(x) = ηR(expF (x))

(where ηR is applied on coe�cients). Thus, (40) implies

(41) b1 ◦ b2(expF (x)) = b1(ηRexpF (x)) · b2(expF (x)).

In other words, letting

(42) b(expF (x)) = x+ g1x
2 + g2x

3 + . . . ,

then

(43) b′i 7→ gi

gives a morphism of Hopf algebroids

(Z,Z[b′1, b
′
2, . . . ]) 7→ (HL,HLB)

where

(Z,Z[b′1, b
′
2, . . . ]) = (Z, H∗BU)

is the standard Hopf algebra coming from the loop space structure on
BU , i.e.

ψ(b′i) =
∑
j+k=i

b′j ⊗ b′k.

Having derived this formula algebraically, we can also see it geometri-
cally, applying the Thom isomorphism to (39). Of course, saying that
this determines the Hopf algebroid structure on (L,LB) would be mis-
leading, since to apply this algebraically, we would �rst need to have
the formula for ηR.
However, putting

(44) (HL,HLSC) = (HZ∗MU,HZ∗MU ∧MSC MU),
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we already know that the right unit is determined by applying the right
unit in (L,LB), followed by (33). Thus, applying the same geometric
argument, we see that (43), (42) de�ne a morphism of Hopf algebroids

(45) (Z, H∗BU)→ (HL,HLSC).

Comparing this with our algebraic formula, we see that (38) gives

∆b(x) = b1(
b2(x)i(x)

b2i(x)
) · b2(x).

Comparing this with (33), we see that our algebraic formula for ∆ in
(HL,HLSC) agrees with the morphism of Hopf algebroids (45). Since
we know the right unit a priori, the formula (38) is proved. To �nish
proving the statement of our theorem, it su�ces to identify the image
of LSC in HLSC, which, however, follows from our spectral sequence
computation, and from analogous consideration at primes p > 2. �

To understand better the Hopf algebroid structure of (L,LSC), we
present the following generalization of a construction of Husemoller
[17]. Suppose (A,R) is a Hopf algebroid. An element s ∈ R is called
primitive if

(46) ∆(s) = 1⊗ s+ s⊗ 1 := (ηL ⊗ Id+ Id⊗ ηR)(s).

Note that a primitive element represents a class in

(47) Cotor1
(A,R)(A,A) = Ext1(A,R)(A,A).

4. De�nition. Let (A,R) be a Hopf algebroid and let S ⊆ R be a set of
primitive elements such that R = R0[S] for some A-algebra R. Then
the Witt construction (A,WS(R)) is de�ned by

WS(R) = R0[S × N0] = R0[si | s ∈ S, i ∈ N0]

where ∆(si) is determined by requiring that the �ghost component"

pisi + pi−1spi−1 + · · ·+ psp
i−1

1 + sp
i

0

be primitive. (Note: as usual, these elements are to be interpreted by
using the universal formulas which they imply in the absence of Z-
torsion.)

5. Lemma. The Hopf algebroid (A,WS(R)), up to isomorphism, only
depends on the images of the elements s ∈ S in (47).
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Proof. TheWitt construction is a pullback of a diagram of a�ne groupoid
schemes

(48)

(X,Φ)
f // (•,Ga)

(•, G).

OO
π

OO

Changing the representatives of the cohomology classes corresponds to
choosing a morphism of a�ne schemes

w : X → Ga

and replacing f by g given on

α : x→ y

by
g(α) = f(α) + w(x)− w(y)

where the addition denotes the operation in Ga. Therefore, the con-
clusion of the Lemma holds if we can lift w to G:

X
w //

  w

Ga

G.

OO
π

OO

The existence of lifting in our case follows from the fact that π is the
Spec of the unit of a polynomial algebra. �

6. Theorem. Let S = {s1, s3, . . . } ⊂ LS be the elements represented
by real projective spaces RP 4i+1, i ∈ N0. Then, locally at 2, we have a
canonical isomorphism of Hopf algebroids

(49) (L,LSC) ∼= (L,WSLS).

Proof. Since the Witt construction Hopf algebroid is commutative and
generated by elements s where ∆(s) does not involve any elements of
MU∗ of dimensional degree > 0, it is given by a coaction of a Hopf alge-
bra on a comodule algebra. Furthermore, this Hopf algebra is bipoly-
nomial. Similar conclusions apply also to the Hopf algebroid (L,LSC)
(see the proof of Theorem 3). Thus, we may apply Proposition 2.3 of
Ravenel and Wilson [34]. �

Comment: It is worth noting now that our spectral sequences con-
verging to MO[2], MSC, despite being based on resolutions by MU -
modules, are not the same as the Adams-Novikov spectral sequences
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s\t− s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Z 0 Z 0 Z2 0 Z3

1 (4) Z (2, 16) Z2 (8, 64) Z4

2 0 (2) (4) (2, 4, 8) (Z, 2, 4) (2, 42, 8, 32)

3 0 0 0 (2) (2)

4 0 0 0 0 0

1

Figure 1. Self-conjugate cobordism groups

for these spectra. A way to see this is to consider the generator
a1 ∈MSC1 = MO[2]1, which corresponds to

(s1) ∈ Ext1LSC(MU∗,MU∗).

We see from (16) that applying the Hurewicz homomorpism

(50) π∗MO[2]→MU∗MSC → HZ/2∗MO[2],

the class a1 goes to the class a1. (This map is given, in fact, by taking
the �rst Stiefel-Whitney class of the speci�ed 1/2 of the stable nor-
mal bundle of RP 1, which is the Möbius strip.) Thus, the class a1

in the source of (50), which is 4-torsion, survives all the maps, and
hence the middle term of (50) must have 4-torsion (the case of MSC
is the same). We conclude that the Adams-Novikov cobar complexes
for MSC, MO[2] have torsion, while the recti�ed cobar complex does
not.

Comment: The Witt construction can be described as a polynomial
coalgebra on generators in topological degrees 2j for j = 1, 2, . . . . Thus,
the E2-term of the recti�ed Novikov spectral sequence for MSC can
be described as (2).
On the other hand, there is a decreasing �ltration on the Witt

construction where for every primitive generator s, the iterated Ver-
schiebung si is 2i. This leads to an algebraic spectral sequence whose
E1-term is

(51) ExtA(Z,Z)⊗MU∗

where the polynomial generators of A act on Z trivially (which is forced
by dimensional degree). This leads to an analog of the May spectral
sequence, which only has non-zero terms for

t− s ≥ s2

For calculations ofMSC∗, see Figure 1 - the numbers indicate orders of
cyclic summands; thus, for example, the group in dimension t−s = 12,
s = 2 is Z/2⊕ Z/4⊕ Z/4⊕ Z/8⊕ Z/32.
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s \ t− s 0 1 2 3 4 5 6 7 8
0 Z0 0 Z0 0 Z2

0

1 (4)1 Z2 (41, 161) (21,Z2,Z4)
2 0 (43) (42) (43, 163, 45)
3 0 0

s \ t− s 9 10 11 12
0 0 Z3

0

1 (221, 81, 641) (221,Z2
2,Z4,Z8)

2 (21, 41, 23,Z6) (223, 83, 643, 45, 165, 43)
3 (44) (47)

1

s \ t− s 0 1 2 3 4 5 6 7 8
0 Z0 0 Z0 0 Z2

0

1 (4)1 Z2 (41, 161) (21,Z2,Z4)
2 0 (43) (42) (43, 163, 45)
3 0 0

s \ t− s 9 10 11 12
0 0 Z3

0

1 (221, 81, 641) (221,Z2
2,Z4,Z8)

2 (21, 41, 23,Z6) (223, 83, 643, 45, 165, 43)
3 (44) (47)

1

Figure 2. The algebraic recti�ed Adams-Novikov
spectral sequence for MSC

For the E2-term of the algebraic spectral sequence (51), see Figure 2.
Subscripts of entries indicate their algebraic �ltration degrees. We can
see from the table that the algebraic spectral sequence has both higher
di�erentials and extensions. For example, there is a d2 from (t−s, s) =
(5, 1) to (t− s, s) = (4, 2). There is an extension in (t− s, s) = (7, 1).

4. The collapse of the rectified Adams-Novikov spectral

sequence for MSC

In this section, we prove Theorem 1. We begin with a general obser-
vation. Let R be an E∞ ring spectrum and let α1, . . . , αn, · · · ∈ R∗ be
elements, and letM be an R-module. We are interested in the example

(52) R = MSC, M = MU.

Then we can form an R-module

(53) F(a1,...,an,... )(R) = holim
n

Σ1−nR/(α1, . . . , αn).

In fact, we can similarly form

(54) F(a1,...,an,... )(M) = holim
n

Σ1−nM ∧R R/(α1, . . . , αn).

The comparison

(55) M ∧R F(a1,...,an,... )(R)
∼ // F(a1,...,an,... )(M)

is a matter of convergence, although the map always exists canonically
and (55) holds in the case of (52). In our present setting, convergence
holds due to increasing connectivity of maps between the �bers

Σ−nR/(α1, . . . , αn+1)→ Σ1−nR/(α1, . . . , αn).
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Now note further that in the case (52), F(a1,...,an,... )(M) maps into
our cobar MSC-resolution with a map inducing an isomorphism on
E2-terms. (This simply follows from the fact that the elements ai are
permanent cycles, a known fact which is recalled in the Appendix.)
Thus, we have

(56) F(a1,...,an,... )(M) ∼ R.

Together with (55), this implies, in fact, that F(a1,...,an,... )(R) is a strong
dual of M in the derived category DR of R-modules, and that in fact,
more strongly, both objects are invertible and inverse to each other.

To see how this implies the collapse of our spectral sequence, we
need to recall some more context. First of all, the algebraicity of (1)
implies that there is a motivic version MSCMot of the spectrum MSC
(we shall only work in the 2-complete motivic category over the �eld
C, suppressing the completion from the notation).

Additionally, by [15], Section 4, we have

(57) MGL? = MU∗[τ ]

where the generators xi, τ have dimensions i(1 + α), (1 − α) in the
notation of [15], where the element τ was denoted θ. For general back-
ground on algebraic cobordism, we refer the reader to Morel and Levine
[24]. The �1, α" notation is motivated by analogs with Z/2-equivariant
homotopy theory via the Real realization - the analogy was noticed in
the 1990's by Hu and Kriz, who used it in several subsequent papers. In
recognition of the connections with algebraic geometry, it has become
more common to denote the dimensions by 1 = (1, 0), α = (1, 1).
Now our constructions may be repeated verbatim in the 2-completed

motivic category over C, we obtain a variant of the spectral sequence
(2) of the form

(58) ExtA(Z,MU∗)[τ ]⇒MSCMot
∗ .

Now we can use the result of Gheorghe [8] which asserts that when we
change rings from SMot to SMot/τ , the resulting spectral sequence

(59) ExtA(Z,MU∗)⇒ (MSCMot/τ)∗

collapses.
In fact, any higher di�erentials in (58) give rise to τ -torsion in

MSCMot
∗ . Now let us return to the setup of the beginning of this

section, this time putting

(60) R = MSCMot, M = MGL
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s\ t− s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Z 0 Z 0 Z2 0 Z3

1 (4) 0 (2, 16) 0 (8, 64) 0

2 (2) 0 (2, 4) (2) (2, 42) (4)

3 (2) 0 (22) (2) (25)

4 (2) 0 (22) (2) (25)

5 (2) 0 (22) (2)

6 (2) 0 (22) (2)

7 (2) 0 (22)

8 (2) 0 (22)

9 (2) 0

10 (2) 0

11 (2)

12 (2)

2

Figure 3. The recti�ed Adams-Novikov spectral
sequence for MO[2]

(still working in the 2-completed motivic category over C). As above,
we conclude again that M = MGL is an invertible object in the de-
rived category of R-modules. By (57), its homotopy groups have no
τ -torsion. Suppose now 0 6= b ∈ π∗R were τ -torsion. Therefore, the
element b would have to act by 0 onM . However, sinceM is invertible,
it would therefore also act by 0 on R, which is a contradiction.

The lack of Z-multiplicative extensions is proved similarly: Suppose

(61) 2mx = yτ

for x, y ∈ R∗. Then the relation (61) will also be true in the corre-
sponding operations on the invertible module M∗. However, in our
case, M∗ = MU∗[τ ], whose operations are MU∗MU [τ ] and thus, (61)
does not occur.

Comment: We do not know if the spectral sequence

(62) ExtLS(L,L)⇒MO[2]∗

collapses to the E2-term. However, recall that the primitive generators
s2k+1 of degrees (t−s, s) = (4k+1, 1) are permanent cycles (represented
by RP 4k+1). Now these manifolds all have non-zero Stiefel-Whitney
numbers of the half-normal number. Equivalentnly, they produce a
non-trivial image by the Hurewicz homomorphism intoHZ/2∗(MO[2]).
Hence, all powers of these generators are non-zero (in contrast, for
example, with Nishida's nilpotence theorem in the stable homotopy
groups of spheres). See Figure 3.
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5. Appendix: The classical methods

The subject of MSC was extensively studied, see for example [4, 6,
10, 23, 27, 28, 35]. We recall here some known partial results some of
which are implicit in our discussion, and which are not easily quotable
in the literature, at least in the present context.

Let us denote by L the subring of all elements x ∈MU∗ such that

c2i+1cj1 . . . cj` [x] = 0

for all i, j1 . . . , j` ∈ N.

7. Theorem. The ring L coincides with the image of the canonical
map ι : MSC∗ →MU∗.

To prove this, note that Im(ι) ⊆ L was proved by Buchstaber [4],
Lemma 24.17. We also have

5.1. Proposition. (Buchstaber [4], Theorem 24.20) If we denote by
κ : MU∗ →MO∗ the canonical map, then

(63) Im(κι) = κ(L).

�

5.2. Proposition. Let

βn = b2
n − 2bn−1bn+1 + · · ·+ 2(−1)nb2n ∈MU∗ ⊗Q

where

b(x) = x+
∑
n≥1

bnx
n+1

is the exponential series of the universal formal group law. Then

(64) L ⊗Q = Q[β1, β2, . . . ].

Proof. The series

β(x) = −x2 +
∑
n≥1

βn(−x2)n+1

satis�es

β(x) = b(x)b(−x) = b(x)ib(x)

where i(x) is the formal inverse. Thus, considering

b : CP∞ → Σ2MUQ, β : CP∞ → Σ4MUQ,

we can write

β = bb
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where b denotes complex conjugation. In other words, β can be ex-
pressed as the composition

CP∞
φ // BU(2)

c2 // Σ4MUQ

where c2 is the Conner-Floyd Chern class and φ is B applied to the
embedding

S1 → U(2)

by

z 7→
(
z 0
0 z

)
.

Thus, the map κ factors as

CP∞ → BO(2)→ BU(2)

where the second map is complexi�cation. Therefore, βn ∈ L ⊗ Q by
the fact that rationally, odd Chern classes vanish on a complexi�ed
real bundle. On the other hand, it follows from considering rational
homology that Im(ι) ⊗ Q is a polynomial algebra on generators in
dimensions divisible by 4 (for example by Conner-Floyd [6]), and thus
our statement follows from a counting argument. �

Recall the Milnor class sn = pn(c1, c2, . . . , cn) in Chern classes where

pn(σ1, σ2, . . . ) = tn1 + tn2 + . . .

where σi are the elementary symmetric polynomials in the ti. Recall
that the Milnor number sn[x] detecs the image of an element x ∈MU2n

in the module of indecomposables QMU2n.

5.3. Proposition. There exists an element Vk ∈ Im(ι)2(2k−1) whose
Milnor number is 8. These elements are equal to v2

k (where we denote
vk = x2k−1) modulo other monomials in the xi. Addionally, Vk can be
chosen so that κ(Vk) = 0.

Proof. For the �rst statement, it su�ces to construct an element in
the given dimension with Milnor number of 2-valuation 3 (since at odd
primes, MSC is just a wedge of copies of BP , see [6]). Now for k ≥ 3,
one notes that

v2

(
2k+1 + 2k − 4

2k+1 − 7

)
= 3.

It follows that in this case, we can take a Stong manifold given as the
Z/2-quotient of an intersection of 2k−2 hypersurfaces of bidegree (1, 1)
in

CP 2k+1−7 × CP 2k+3
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by the diagonal Z/2-involution on both CP 2i+1-factors:

(z0, z1, . . . , z2i, z2i+1) 7→ (−z1, z0, . . . ,−z2i+1, z2i).

For k = 1, 2, one must use other generators (e.g. [27] observes that the
statement of Theorem 7 is true in dimensions ≤ 128).
Now by Proposition 5.2, Vk is congruent to 4β2k−1 modulo the square

of the augmentation ideal in Im(ι) ⊗ Q. We see that no multiples of
the monomials of βiβj contain v2

k, which is a monomial summand of
4β2k−1. The second statement follows. Finally, for the last statement,
by [28, 4], Im(κι) is the 4th power of the Floyd ring. In particular, it
is a polynomial ring with generators in dimensions 8(2i+ 1), 8 · 2`, 8 · i
where i is not a power of 2. Therefore, lifting the generators to Im(ι),
none of them can contain a rational multiple of β2k−1 as a summand
(for reasons of dimension). Therefore, adding a polynomial in these
generators cannot cancel the term v2

k. �

Proof of Theorem 7. It remains to prove that

(65) L ⊆ Im(ι).

Since (as we already noted) the problem is trivial at odd primes, we
may work completed at 2. Thus, suppose y ∈ L∧2 . By Proposition 5.2,
we may write

y = p(V1, V2, . . . )

where p is a polynomial with coe�cients in

Q2[xi | i 6= 2k − 1].

However, the coe�cient a` where ` = (`1, `2, . . . ) of V
`1

1 V `2
2 . . . must in

fact satisfy

a` ∈ Z2[xi | i 6= 2k − 1],

since otherwise the element y would not belong to (MU∗)
∧
2 (consider

the coe�cient of v2`1
1 v2`2

2 . . . ). Additionally, we must also have a` ∈
Q2[β1, β2, . . . ] (since the element of highest degree which fails this con-
dition would contradict Proposition 5.2).
Now by Proposition 5.1, there exist b` ∈ Im(ι) so that

b` − a` ∈ (2, v1, v2, . . . ).

Now since we also have b`−a` ∈ L, it will have a lower degree (and hence
be subject to induction) except when ` = 0. However, the constant
term of b0−a0 is now divisible by 2. Thus, we may divide the constant
term by 2 and apply the same procedure to it, and apply induction to
its other coe�cients. Since we are working completed at 2, the in�nite



24 PO HU, IGOR KRIZ, BENJAMIN RILEY AND PETR SOMBERG

sum in increasing powers of 2 we produce by repeating this process will
converge to an element of Im(ι)∧2 which is equal to y.

�

Suppose now we �lter LSC by 1/2 times the topological degree of
the L-degree of the augmentation LSC → L. This is a decreasing
�ltration, and one has an algebraic Novikov spectral sequence

(66) E2 = Cotor(L,E0LSC)(L,L)⇒ Cotor(L,LSC)(L,L).

Moreover, it follows from the discussion of the previous section that
the left hand side of (66) is of the form

(67) Cotor(L,E0LSC)(L,L) = ΛL(a1, a3, a5, . . . )

where the generator a2k+1 is in degree 2k + 1. Moreover, it follows
from considering the Adams spectral sequence that the generators a4k+1

are realized by the manifolds RP 4k+1 whose stable tangent bundle is
(4k + 2)γ1

R, which is double a real bundle, and thus canonically has a
structure of a self-conjugate complex bundle.
On the other hand, the representatives N4k−1 of a4k−1 were con-

structed by Landweber [23, 35]. They are given by

S4k−1 ×Sp(1) S
3

where Sp(1) acts on S4k−1 (thought of as the unit sphere in Hk) by
right multiplication of quaternions, and on S3 = Sp(1) by conjugation.
(Here we are considering only the compact form of Sp(k).)
One then remarks that the sum of the tangent bundle of N4k−1 and

a 1-dimensional trivial real bundle is isomorphic to kγ1
H, and thus has

a canonical structure of a self-conjugate complex bundle.

5.4. Proposition. The Toda brackets

(68) 〈a2k+1, a2k+1, . . . , a2k+1〉
all contain 0 ∈MSC∗.

Proof. We begin by showing that

(69) a2
2k+1 = 0.

When k is even, consider the manifold with boundary

M = RP 4k+1 × RP 4k+1 × [0, 1]

with Z/2-action by

(70) (x, y, t) 7→ (y, x, 1− t).
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The �xed point submanifold is

∆× {1/2}
where ∆ ⊂ RP 4k+1×RP 4k+1 is the diagonal. Thus, the normal bundle

νM∆ = (4k + 2)γ1
R,

with Z/2-action by

(71) x 7→ −x.
This is canonically a complex bundle, so we can perform a complex
blow-up of ∆ in N and form a non-singular manifold Z by taking
the Z/2-quotient (since the submanifold of Z/2-�xed points now has
complex codimension 1). Moreover, the construction just performed
is complex and self-conjugate, thus proving that the manifold Z with
boundary has an MSC-structure, thus providing the cobordism which
proves (69).
In the case of k odd, we put, analogously,

M = N4k−1 ×N4k−1 × [0, 1],

again with Z/2-action by (70). This time, the �xed point manifold is

E × {1/2}
where E ⊂ N4k−1×N4k−1 is the diagonal. Thus, the normal bundle is

νME = kγ1
H.

Once again, this is naturally a complex bundle, so we can perform a
complex blow-up of E, and then take a Z/2-quotient, thus again getting
a manifold with boundary Z. Since, again, the construction performed
is complex and self-conjugate, Z is an MSC-cobordism, again proving
(69).
Now assume an MSC-cobordism Zn is is constructed proving (67)

with n factors. If k is even, we form a manifold Mn by gluing Zn ×
RP 4k+1 and RP 4k+1 along

RP 4k+1 ×Mn−1 × RP 4k+1

and multiplying by [0, 1]. The manifold Mn has a natural action by
reversing the order of the copies of RP 4k+1 (and extending by the cor-
responding maps on the cobordism coordinates), and mapping

t 7→ 1− t
on the new interval coordinate. The action is free on the previous
cobordism coordinates, so the �xed point manifold Dn is {1/2} times
the �xed point of the Z/2-action on

(RP 4k+1)n
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by reversing the order of factors. This is a diagonal manifold isomorphic
to (RP 4k+1)dn/2e, and its normal bundle is a sum of bn/2c copies of the
(4k + 2)γ1

R on the individual coordinates, and a trivial bundle, with
Z/2-action by (71). (Because of the previous cobordism coordinates,
there are always enough trivial coordinates to stabilize.) Thus, the
normal bundle of Dn in Mn is a self-conjugate complex bundle, and
we can again perform a complex blow-up of Dn in Mn, and then take
a Z/2-quotient. The construction is complex and self-conjugate, and
thus, we obtain the required cobordism proving (67) with n+1 factors.
The case of k odd is completely analogous, with RP 4k+1 replaced by

N4k−1. �
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