WHAT IS AN EQUIVARIANT ADAMS SPECTRAL
SEQUENCE?

IGOR KRIZ AND BAR ROYTMAN

ABSTRACT. While the Adams spectral sequence is a fundamental
tool for computing non-equivariant stable homotopy groups from
ordinary homology groups, no analogous universally applicable tool
is known equivariantly. This is due in part to the variety of in-
equivalent generalizations of ordinary homology in the equivariant
setting, and in part to the added complexity of each such theory.
In this note, we exhibit an equivariant Adams spectral sequence,
where the role of ‘ordinary’ homology is played by a collection
of spectra represented by chain complexes of Mackey functors for
subgroups of G. In the process, we revisit concepts introduced by
Guillou-May, Kaledin, Barwick, and others in a new light.

1. INTRODUCTION

Similarly as non-equivariantly, for a finite group G-equivariant or-
dinary homology theory is defined as a (genuine, i.e. RO(G)-graded)
G-equivariant spectrum whose Z-graded Mackey-functor valued homo-
topy groups are concentrated in degree 0. (For a review of these con-
cepts, we recommend |12, 13].) Mackey functors form a tensor (abelian)
category, where the unit of the tensor product, denoted by O, i the
Burnside Mackey functor A = Ag (see e.g. [4]). Accordingly, Ag
can be considered universal coefficients for RO(G)-graded equivariant
(co)homology. Non-equivariantly, of course, the Eilenberg-Mac Lane
spectrum with universal coefficients H|Z is not a good basis for the
Adams spectral sequence, since HZ is not a flat spectrum in the sense
that HZ,HZ is not flat over HZ,. One uses the flat spectrum HZ/p in-
stead, which, for bounded below spectra of finite type (i.e. cell spectra
with cells of dimensions bounded below, and finitely many cells in each
dimension), gives the familiar Adams spectral sequence converging to
W*XPA.

Equivariantly, however, HA/p cannot be expected to be a flat spec-
trum. One might expect that a better candidate may be the constant
Mackey functor spectrum HZ/p. This has in fact been shown to work

in [9] for p = 2 and G = Z/2, when we consider the RO(G)-graded
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Steenrod algebra (and converging to RO(G)-graded homotopy groups).
However, this already becomes much more problematic for G = Z/p.
Sankar and Wilson [15] showed that for G = Z/p, HunderlineZ/p is
not a flat spectrum, even in the RO(G)-graded sense. This can still
be partially remedied. In [6], the RO(Z/p)-graded HZ/p-based dual
Steenrod algebra has been fully calculated. Flatness can be partially
restored (modulo free spectra in a suitable sense) if along with the
Mackey functor Z/p, one includes the Mackey functor Zp_l which is 0
on the fixed orbit and the integral reduced regular Z /p-representation
on the free orbit (see [8]). In any case, this approach does not seem
workable for larger groups G.

Kaledin [10] investigated derived Mackey functors, which are essen-
tially equivalent to i;(HZ)-modules, where i; denotes the pushforward
from non-equivariant to G-equivariant spectra indexed on a complete
universe. The point is that for a commutative ring R, 4R is an
E-ring spectrum, and therefore has a nice derived category of F..-
modules, which is equivalent to the derived Mackey functors of [10]
(also related to the concepts of [1]).

Kaledin remarked that derived Mackey functors behave, in many re-
spects, better than Mackey-valued G-equivariant ordinary (co)homology.
For example, for any finite group G, i4HZ/p is always a flat spectrum
and the Adams spectral sequence based on it always converges to the
p-completed homotopy groups of a bounded below G-spectrum X of
finite type. This is simply because we have

(i HRA X) = HR.(X%),
in particular
T (wHZ/p NiyHZ/p) = m. HZ/p @ A,

where A, denotes the non-equivariant dual Steenrod algebra, so the
iyHZ/p-based Adams spectral sequence is simply

(1) Cotora (Z/p, HZ/p.(X%)) = m.X).,

i.e. the non-equivariant Adams spectral sequence for X¢. It may also
be helpful to recall that by the Segal-tom Dieck splitting,

m.(izHR) = @ HR.(BW(H)).
()G

It is worth noting that there are other ways in which derived Mackey
functors behave well. For example, they have a spectral version, which
can be used to characterize the derived category of G-spectra (i.e. the
G-equivariant stable homotopy category), [2, 5.
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The drawback of using i4HZ/p as a base of an Adams spectral se-
quence as in (1) is that, in some sense, we have not gained anything:
if we knew the homology of the fixed point spectrum X¢, there is no
need of an equivariant Adams spectral sequence. Maybe more to the
point, derived Mackey funcrors do not really have a model that would
allow, say, an algorithmic chain-level computation of (iyHR).X, for,
say, a finite G-CW-complex X.

This brings up the main point of the present note. For us, an or-
dinary (co)homology theory means a G-equivariant spectrum which is
realizable by a chain complex of Mackey functors. We will prove the
following

1. Theorem. For a finite group G, there exists a diagram Dg of Foo-
G-equivariant ring spectra (in fact realizable by E.-algebras in chain
complezes of G-Mackey functors and E..-morphisms such that

as an Eu-ring spectrum. A similar statement also holds with Z replaced
by any commutative ring.

The precise statement will be made in the next section. However,
recall that for a projection vy : G — G/H, and a G/ H-Mackey functor
M, we have a G-Mackey functor 3, M, whose value on isotropy J is the
value of M on isotropy J/H when J O H, and 0 otherwise.R ecall also
that For H C G, there exists a G-representation ay such that af, = 0
if and only if J O H. In those terms, the entries of the diagram can be
written as

H(WhAg) A S>¥ | K C H.

Denote, for any G-representation V,
ay SO — S v

the inclusion. Then, Theorem 1 has a corollary for computing the
homology of X¢ for a G-spectrum X:

2. Corollary. For a G-spectrum X, there exists a spectral sequence

(3) R lim(H (Vi Ar)o(X) g, ) = HZ_(X).

Here the subscript 7, denotes RO(G)-graded coefficients, as in [9].
(We could, alternatively, write the homology group on the ordinary
homology on the left hand side of (3) as

(4) (VieAi ®on C(S))u(X)
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Note that this does count as “ordinary” equivariant homology in the
sense we defined it. Again, the precise form of the diagram will be
described in the next section.

One should note that (2) cannot really be considered a chain-level
construction involving Mackey functors. If it were, then i HZ would
be realized by a chain complex of Mackey functors, i.e. an ordinary G-
equivariant (co)homology in our sense, which would make it an H.Ag-
module. This is not the case (as will be seen in the next Section).
Thus, a spectral sequence albeit “short,” is the best we can do.

We will see that an analogous statement to Corollary 2 holds with
coefficients in any abelian group. Then one interesting feature of (3)
is that it specifies a decreasing filtration on the ordinary homology
of X% for a G-spectrum X. We call this the Hodge filtration. It is
important to note that this filtration cannot exist spectrally. While
the sphere spectrum can be considered as a spectral analogue of the
derived Mackey functor corresponding to i;( HZ) via the results of |2, 5],
there is no spectral analogue of HAg. We will return to this point in
Section 3.

Accordingly, the Hodge filtration does not preserve Steenrod action,
but exhibits a more delicate behavior instead. For illustration, we will
work out the example of RO(G)-graded spheres for G = Z/p.

More generally, for primary cyclic groups, it turns out that the non-
trivial information in the Hodge filtration is F° C F*. We shall also
work that out explicitly.

In this context, a couple of peculiar properties of ordinary equivari-
ant (co)homology should be mentioned. One is that C,(S**#), while
obviouly an E-algebra in chains, cannot actually be represented by a
strictly graded-commutative DGA. Thus, the building blocks of iy HZ,
while still representing “ordinary” (o)homology theories, are actually
not strictly commutative in the same way as Green functors, and only
have F_-commutativity. As already mentioned, the diagram D cannot
be realized on chain level, even though its individual arrows can be.
This is due to a curious “tilting” ot ech entry of the diagrm, whereby an
equivalent E., ring spectrum has two different chain-level realizations
which cannot be ralated no chain level.

Another strange effect is that the forgetful functor from the derived
category of G-Mackey functors to G-spectra is not faithful. An example
actually is given by the first k-invariant of C,(S*°*#). We will discuss
these points in Section 3 below.
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2.1. The abelian case. Our construction is easier to describe in the
case of an abelian group. For that reason, we treat this case first.
Thus, let G be a finite abelian group. Consider the partially ordered
set P = P whose elements are pairs of subgroups K C H, and we put

(5) (Ki1 C Hy) < (K € H,y)
when
H, C Hy, Ki2 K.
We will exhibit a functor
D =7Dg : P — G-E,-ring spectra.

To this end, for a subgroup H C G, we recall the representation ay
where for a subgroup J C G, af; = 0 if and only if H C J. Then the
suspension spectrum of S®%# is an F,-ring spectrum which can be

used as a model for the unreduced suspension EF[H|, where F[H] is
the family of subgroups not containing H and for a family F, EF is a
G-CW-complex whose J-fixed points are contractible for J € F, and
empty otherwise.

Now, for a subgroup H C G, consider the functor

(6) ¢ : ST -Modules — G/ H-Spectra
(where by modules, we mean E.-modules), given by
X — X",

It is known (see, for example , |7]) that ¢ is a right adjoint, and in-
duces an equivalence on derived categories. We also note that the
fixed point functor preserves F..-ring spectra, and that we have an
FE-representative

(7) ¢ HAy = HYj Ay

where for a G/H-Mackey functor M, ¢} (M) is the Mackey functor
which on the orbit G/K is equal to M (G/K), and is 0 on other orbits.
The counit of adjunction then gives an E.,-morphism

(8) Hyp Agym — HAg A S
In fact, applying the same principle, we get an E,-morphism
(9) Hw}}lAG/Kl N §%HL H¢;(2AG/K2 N GO H,

when (5) holds (since we can replace G by G/K, and assume ay, C
ay,). This gives a functor

(10) D =Dg : Pag — G-E,-ring spectra.
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We can now restate Theorem 1 more precisely as

3. Theorem. There is a canonical morphism of G-E.,-ring spectra
(11) Lo W HZ — ho(l_im D¢

which is an equivalence.

Proof. The morphism ¢¢ of (11) is given by the fact that 4; is left adjoint
to G-fixed points. To prove that this morphism is an equivalence, we
will use the fact that a morphism f of G-spectra is an equivalence if
and only if

(12) o7 (f) = (f AS=)’

is a non-equivariant equivalence for every subgroup J C G.

To verify this property for vg, we apply ®’ to every entry of the
diagram Dg. First note that when doing so, all (K C H)-terms become
0 unless

(13) HCJ

Next note that all arrows (5) of the diagram ®’Dg where (13) holds
(i.e. where Hy C J) and where K; = K5 are equivalences by definition.
This means that for the purposes of calculating ®’, we only need to
consider the part of the diagram ®’Dg on entries of the form (K C J).

However, by the definition of a homotopy limit, it then suffices to
restrict attention to the term (J C J), i.e. ® HAg,;, which is HZ

non-equivariantly. This completes the argument.
O

Remark: One may apply ? ®z R for a commutative ring R to all the
constructions up to this points and all the statements and arguments
therefore hold with coefficients in R. In fact, R can be any abelian
group, although in that generality, the diagram is only in the category
of spectra (not E.-ring spectra).

2.2. The case of Z/p. Let us consider the case of G = Z/p. (For
simplicity, we limit the discussion to R = Z.) Let 8 be a faithful one-
dimensional complex representation of Z/p. Then the diagram Dz,
becomes

HZ?
(14)

H Az —— H(A®gor C.(5%7))
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where Z¢ is the Z/p-Mackey functor with value Z in isotropy Z/p and
value 0 in isotropy {0}.

Now the RO(Z/p)-graded coefficients (H.Az/,), were calculated by
Stong [16]. For simplicity, let us localize at p, where the choice of
does not matter, as p-local Z/p-equivariant homology is periodic in a
difference of choices of 3, cf. [11]. Stong’s calculation can be easily
recoverd by considering the Burnside Mackey functor valued homology
and cohomology of the CW-complex S*. For p > 2, the behavior of

(15) (HAzp)k+es

depends on k. For k =0, (15) is Az, = Z ® Z for ¢ = 0, the augmen-
tation ideal I = Z for £ > 0 and the quotient A/I = Z for ¢ < 0.

For k > 0, (15) behaves like Borel cohomology. This means that we
get A/I = Z for k even and ¢ = —k/2, and Z/p for ¢ < —k/2, and 0
otherwise.

For k < 0, (15) behaves like Borel homology. This means that we
get I = Z for k < 0 even and ¢ = —k/2, Z/p for k < —1 odd and
¢ > —(14k)/2, and 0 otherwise.

This accounts for the lower left corner of the diagram (14). The rest
of the diagram is (-periodic. The lower right corner can be identified
with the Mackey-valued chain complex of the usual periodic Z/p-CW-
structure on S*?. Denoting, as in [8], by L, the free Z/p-Mackey
functor on one generator in isotropy {0} (which is Z in isotropy Z/p
and Z[Z/p] in isotropy {0}), this Mackey functor-valued chain complex
becomes
(16) A<top 20 p Lt

P =P =p

(where v denotes the generator of Z/p and the arrows are labelled by
the image of the free generator).

We will study the chain complex (16) further in the next section.
For the moment, let us confine ourselves to observing that its chain
homology is

(17) AL 0 7/ p® 0 7/ p®

The upper right corner of diagram (14) is the 0 homology term of (17).

This means that the RO(Z/p)-graded coefficients of iyHZ, as calcu-
lated from diagram (14), is obtained from the RO(Z/p)-graded coeffi-
cients of HAz/, by replacing, for k£ > 0, Borel cohomology with Borel
homology. Thus, we get I = Z for k > 0 even and ¢ = —k/2 and
Z/p for k > 0 odd and ¢ > —(k + 1)/2. This is easily confirmed using
standard the Segal-tom Dieck splitting.
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The only non-trivial step of the Hodge filtration for G = Z/p is
(18) F'HR,(X%?) C F'HR,(X"?) = HR,(X?%/").
Given the definition, (18) can be described as the imae of the compo-
sition

(H(Agzp ® R) A S8 A X )27

|

(19) (HAzj, ® R)AEZ/py N X)) <= HR,_1(EL/py Ngjp X)

|

HR, 1 X

where the vertical maps come from the isotropy separation exact tri-
angle

EZ/p, — S — S>F,
In the special case X = S*°, k € Z, the above calculation implies that
we have precisely

(20) F'HR.((S*)%/P) = HR.,(S*).
In particular, for R = Z/p, for k > 0, this can be restated as
HZ/p.((S™*)*") = HZ/p.(C(S — BZ/p%},))

where on the right hand side, we have the cofiber of the standard map
from the O-sphere tp tje stunted lens space. It is well known that
the Steenrod operations cross from positive to negative homological
dimensions, so they do not preserve the Hodge filtration.

The case p = 2 is essentially the same except that § = 2a where «
is the real sign representation. (See also [9].)

2.3. Primary cyclic groups. When G = Z/(p™) is a primary cyclic
group, the situation is essentially analogous. By Quillen’s Theorem A,
the diagram Dg can be replaced by its subdiagram where

[H:K]|<p

(a “staircase” diagram). It then follows that analogously to (18), the
only relevant piece of information in the Hodge filtration is

In turn, the F'! is the (not generally direct) sum of the images of all its
terms with
[H : K] = p.
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Consider Z/p* as a factor group of Z/p™. Then we can characterize
these images as the images of the compositions

22)
(H(Azjpr @ R) A Ei/?k A X)%/p

|

(HAz» ® R) A EZJpE A X)2 <= HR, ((EZ/pk Agjpm X)

|

HR, X

where the vertical maps coe from the istropy separation distinguished
triangle

EZ/p% — S — EZ/p*.

2.4. The general case. Let us now assume that G is any finite group,
not necessarily abelian. Formulating our construction in this case
would at first appear to encounter a numer of difficulties caused by
the presence of non-normal subgroup. It turns out, however, that a
closely analogous construction makes sense. if we develop the right
concepts.

The first notion we have to discuss are homotopy limits over equivari-
ant diagrams of spectra. (The case of spectra with additional struc-
ture, such as E,, ring, is completely analogous.) Using the setup of
Lewis-May spectra [12]|, we can consider an equivariant diagram D of
G-U-spectra where U is a fixed complete universe. This means that
the source of D is a small category on which GG acts by a group of au-
tomorphisms, and the functor into G-U-spectra is G-equivariant. This
means that to an object a of D of isotropy H, there is assigned an
N (H)-equivariant spectrum X, indexed on the universe U, considered
as a complete N(H )-universe. Morphisms are required to be equivari-
ant with respect to their isotropy groups.

We can define
lim D
—
for an equivariant diagram of G-U=spectra as described above. This is
defined as the right adjoint to the constant equivariant diagram, which,

on a given source, assigns the same U-G-spectrum X to every object,
and Idx to every morphism.
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We can now define the homotopy limit of an equivariant diagram
of G-spectra as the total right derived functor of this construction.
Explicitly, this can be computed by taking the barycentric subdivision
of the source of D, whose set of objects is given by tuples of composable
morphisms, and morphisms are given by composition resp. omitting
the first or last moprhism. The functor is given by the first object in
the tuple.

Now we can “resolve” the barycentric subdivision by sending each
composable n-tuple of morphisms to F(A", X,,) where « is the source
of the first morphism of the tuple and A" is the standard n-simplex.

Now for the case of a non-abelian finite group G, the source of our
equivarant diagram consiss of the poset of subgroups H C K of G
where (H, K) C (H', K') means

HCHCKCK

where G acts by conjugation. The value of the diagram on an object
H C K can be described as

(23) Hro(S®EF[H)) A EF[K].

We note that while we do not technically exclude the case of H being
a non-normal subgroup of K, the isotropy of the pair (H, K) is the
intersection of normalizers N(H) N N(K), which, in the case of H not
normal in K, does not contain K, so the term (23), which is an N(H)N
N(K)-equivariant spectrum on the given universe, is contractible, and
thus these terms do not contribute to the diagram.

With this caveat, the proof of Theorem 3 proceeds in the same way
as in the abelian case and so does the definition of the Hodge filtra-
tion. Concrete calculations in the non-abelian case are, of course, much
hrader to complete.

3. SOME PECULIARITIES OF ORDINARY EQUIVARIANT HOMOLOGY

In this section, we shall exhibit some manifestations of “non-commuta-
tivity” of the pushforward iy HZ. To this end, we shall specialize to the
case H = Z/p, and we shall take a closer look at the chain complex of
Mackey functors (16).

3.1. Non-commutativity of chains. Since (16) is the chain complex
of S8 with coefficients in the Burnside Mackey functor A, it auto-
matically has a structure of an F.-algebra in the category of chain
complexes of Mackey functors. We will see that it does not have a
strictly graded-commutative differential graded algebra model. This is,
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as usual, done by showing that there are non-trivial Dyer-Lashof op-
erations. In fact, Dyer-Lashof operations apply to E-F,-algebras, so
we take Z/p-fixed points and reduce modulo p, both of which preserve
E-algebra as well as graded-commutative DGA structures. After ap-
plying these steps, we are left with the E-algebra in F,-modules given
as

(24) (Cu(S=FT,)) /P

To show that the F..-algebra (24) has non-trivial Dyer-Lashof opera-
tions, we note that (24) has a periodicity class t in second homology; if
we invert this class, we obtain simply the Tate cohomology chain com-
plex (the chain realization of ordinary Tate cohomology) of G = Z/p
with coefficients in F,,.

The Dyer-Lashof operations of the Tate chain complex, in turn, come
from those in the Borel cohomology chain complex, which is simply

C*(BZ/p;F),

in which the Dyer-Lashof operations are sunply the Steenrod operations
of BZ/p, and therefore are non-trivial. By the Whitney formula, then,
the Dyer-Lashof operations are also non-trivial in the homology of (24).
For example, the total Dyer-Lashof operation of ¢ is

tP(1+ 1)~

Thus, in particular, (24) does not have a strictly graded-commutative
DGA model.

3.2. The forgetful functor from Mackey functor to G-spectra
is not faithful. The reason why diagram (14) exists on the level of
Z/p-spectra but cannot be fully realized on chain level is the existence
of two chain models of the lower right corner (before or after applying
the functor ¢z/,. These two models are related by a “tilting” which
works spectrally, but not on chain level.

To demonstrate this, we have already seen that the O-stage of the
Postnikov tower of the Z/p-spectral realization of (16) splits off (in fact,
we also saw that by arguing more carefully, the splitting can be chosen
to be a morphism of F..-ring spectra). This is, again, simply because
the splitting exists in S°-modules, the derived category of which is
equivalent to the category of non-equivariant spectra by taking Z/p-
fixed points: in non-euivariant spectra, we are dealing simply with
a generalized Eilenberg-Mac Lane spectrum, which therefore splits as
a wedge sum of the Eilenberg-Mac Lane spectra corresponding to is
homotopy groups.
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We will now show, however, that the first k-invariant of the chain
complex of Mackey functors (16), which, by (17), lies in

(25) Bty (22, 7./p?),

is non-zero. To do this calculation, we recall the constant and co-
constant Z/p-Mackey functors Z, Z, and also the Z/p-Mackey functor
L, 1, which is the integral reduced regular Z/p-representation £,_; in
isotropy {0} and 0 in isotropy Z/p. Then one has a 4-periodicity given
by short exact sequences of Z/p-Mackey functors

072> A—=7Z—0,
0-Z—>A—=7°—0,
0—>£Np_1—>§p—>Z—>0,

0—>Z—>§p—>£~p_1—>0.

The 7<2 (graded homologically) of (16) can be represented by the chain
complex

NI

(26) A<l

whose homology is given by the first three entries of (17). The 7 is
Z¢ which is equivalent to the chain complex

(27) A<t T p Z.

=P =P

A chain map from (26) to (27) is identity on the first three terms
together with the inclusion « : Z — Z which is p in isotropy Z/p and
identity in isotropy {0}. We conclude that our k-invariant in (25) is

equal, by the above periodicity, to the element of
Hom(Z,7./p%)

given by the cokernel of x, which is non-zero.

Thus, the first k-invariant of (16) is non-zero in the derived category
of Mackey functors (where it lies in (25)) but vanishes in the derived
category of Z/p-equivariant spectra. We conclude therefore that the
forgetful functor from the derived category of Z/p-Mackey functors to
the derived category of Z/p-equivariant spectra is not faithful.
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3.3. Non-existence of spectral Mackey functors. In this subsec-
tion, for simplicity, let us specialize to G = Z/2. In this case, the
isomorphism Az, = Z[Z/2] sending the free orbit to 1 + « (where
is the generator) gives a curious ivolutiony on 7Z/2-Mackey functors
swapping the free with the fixed orbit and restriction with corestric-
tion. This involution swaps Az, with the free Mackey functor on one
Z/2-free generator L,, and Mackey functors which are 0 on the free
orbit with those which are 0 on the fixed orbit.

Now we can observe that the derived category of spectrra which are
contractible on the free orbit is equivalent, via taking fixed points, to
the derived category of non-equivariant spectra. We claim, on the other
hand, the following

1. Proposition. A Z/2-equivariant 2-completion of a bounded below
spectrum X of finite type with contractible 7Z/2-fixed points is a 7./2-
equivariant generalized Filenberg-Mac Lane spectrum.

Proof. Denote by M any abelian group and by My the Z/2-Mackey
functor which is 0 on the fixed orbit and M (on which 7 acts by minus)
on the free orbit. one has (cf. [9])

HM; =%"*HM

where « is the real sign representation. Thus, if X is as described
in the statement of the Proposition, then the terms of the Postnikov
tower of ¥*71X are of the form HM where M is a finitely generated
Zo-module. However, the only non-trivial morphisms between the 7Z-
graded suspensions of such spectra are Bocksteins (|9, 3]). O
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