Igor Kriz

Professor of Mathematics,

University of Michigan

This page is under construction

My Mathematical Interests

Algebraic topology, especially equivariant stable homotopy theory, Mackey functors, cobordism, motivic homotopy theory

Some recent papers

I.Kriz, Y.Lu: On the structure of equivariant formal group laws, Homology Homotopy Appl. 27 (2025), no. 1, 383–402

P.Hu, I.Kriz, P.Somberg: On the equivariant motivic filtration of the topological Hochschild homology of polynomial algebra, arxiv:2205.134279Adv. Math. 412 (2023), Paper No. 108803, 12 pp.

P.Hu, I.Kriz, P.Somberg, F.Zou: Equivariant operations in topological Hochschild homology, arxiv:2504.07064, Math. Z. 310 (2025), no. 4, Paper No. 67, 21 pp.

P.Hu, I.Kriz, P.Somberg, F.Zou: The Z/p-equivariant dual Steenrod algebra for an odd prime p, arxiv:2205.134279

P.Hu, I.Kriz, P.Somberg, F.Zou: The Z/p-equivariant spectrum BPR for an odd prime p, arxiv:2407.16599

P.Hu, I.Kriz, P.Somberg, B.Riley: On Smith-Stong's self-conjugate cobordism challenge

P.Hu, D.Kriz, I.Kriz, P.Somberg: Some remarks on plectic motivic spaces and spectra, Czechoslovak Math. J. 75(150) (2025), no. 2, 585–598

V.Burghradrt, P.Hu, I.Kriz, P.Somberg: Perverse Mackey functors

I.Kriz, B.Roytman: What is an equivariant Adams spectral sequence?

V.Burghardt, P.Hu, D.Kriz, I.Kriz, P.Somberg: Chain-level models of equivariant topological Hochschild homology of semiperfect and smooth algebras over finite fields

Teaching

Here are the course notes of some of my recent courses.


How to Contact Me

  • By U.S. mail:
    Mathematics Department
    University of Michigan
    Ann Arbor, MI 48109-1109 USA